- [3] K. WIEGHARDT, V. BOSSEK, P. CHAUDHARI, W. HER-RMANN, B.C. MENKE, J. WEISS, *Inorg. Chem.*, 21, 4308 (1982).
- [4] J. KING, N. DAVIDSON, J. Chem. Phys., 29, 787 (1958).
- [5] J. OAKES, E.G. SMITH, J. Chem. Soc., Faraday Trans. 2, 77, 299 (1981).
- [6] J. OAKES, E.G. SMITH, J. Chem. Soc., Faraday Trans. 1, 79, 543 (1983).
- [7] C.C. BRYDEN, C.N. REILLEY, Anal. Chem., 54, 610 (1982).
- [8] C.C. BRYDEN, C.N. REILLEY, J.F. DESREUX, Anal. Chem., 53, 1418 (1981).
- [9] A.D. SHERRY, M. SINGH, C.F.G.C. GERALDES, submitted for publication to J. Am. Chem. Soc.
- [10] C.F.G.C. GERALDES, M.C. ALPOIM, M.P.M. MARQUES, A.D. SHERRY, M. SINGH, submitted for publication to *Inorg. Chem.*

PS5.44 — TH

KELLEY WOODRING RICHARD W. TAYLOR Department of Chemistry University of Oklahoma Norman, OK. 73019 U.S.A.

SUBSTITUENT EFFECTS ON THE DISSOCIATION KINETICS OF HEAVY METAL ION CRYPTATES

The dissociation kinetics of the cryptates of 2.2.2, 2.2.2_D, $2_{B.2_B.2}$ and $2_{C.2_C.2}$ with Tl^+ and Pb^{2+} have been studied in water and methanol-water (90:10) at 25.0°C. The dissociation reactions generally displayed parallel solvolytic (k_d) and acid-catalyzed (k_H) pathways consistent with the rate law:

$$-d[MCryp^{n+}]/dt = (k_d + k_H[H^*]) [MCryp^{n+}].$$

The introduction of a decyl side chain $(2.2.2_{\rm D})$ produced only minor variations in the values of k_d and k_H when compared with the parent cryptand, 2.2.2. Larger effects are observed with the dibenzo-derivative $(2_{\rm B}.2_{\rm B}.2)$ with Tl⁺ and for the dicyclohexano-derivative $(2_{\rm c}.2_{\rm c}.2)$ with both Pb^{2+} and Tl⁺. The rate constants for the uncatalyzed and acid-catalyzed pathways in methanol-water decrease by 20- to 200-fold compared with the corresponding values obtained in water.

INTRODUCTION

The macrobicyclic polyoxa-diamines (cryptands) introduced by LEHN and co-workers form stable complexes with alkali-, alkaline-earth- and heavy metal cations [1,2]. The relative rigidity of these ligands results in peak type selectivity related to the ratio of ligand cavity to metal cation diameter. In addition to cavity size, parameters such as donor atom type and ligand backbone substituents also affect the complexation properties of the cryptands [1-3]. The introduction of hydrophobic decyl-, benzo-, and cyclohexano-moieties into the cryptand (see Fig. 1) structure increases their ability to solubilize salts in non-polar media [4] and

Structures of 2.2.2 Cryptands

membranes [5,6]. In view of the demonstrated ability of the parent compound, cryptand 2.2.2, to enhance elimination of toxic heavy metal ions [7,8] an evaluation of substituent effects on the complexation properties with Pb^{2+} and Tl^+ was carried out and the results are reported in this communication.

EXPERIMENTAL

Cryptands 2.2.2, 2.2.2_D, 2_B.2_B.2 and 2_C.2_C.2 were obtained from E. Merck and used without further purification. Stock cryptand solutions were analyzed spectrophotometrically [9]. Kinetic studies were carried out by mixing equal volumes of the appropriate cryptate $(3.0-7.0 \times 10^{-5} \text{ M})$ with a solution of known HClO₄ concentration (1.12--74.5 mM). The reactions were monitored in the wavelength region of 245-255 nm on either a Durrum stopped-flow or a Hitachi 80-100 spectrophotometer. The cell temperature was maintained at 25.0 (±0.1)°C using a thermostated water bath. All reactions were pseudo-first-order and rate constants were obtained using standard least squares technique.

RESULTS AND DISCUSSION

In strongly acidic media the cryptate complexes dissociate via parallel uncatalyzed and proton-catalyzed pathways. The data are consistent with the rate law:

$$-d[MCryp^{n+}]/dt = (k_d + k_H[H^+])[MCryp^{n+}]$$
(1)

where $M^{n+} = Tl^+$ or Pb^{2+} and k_d and k_H are the rate constants for the uncatalyzed and acid-catalized pathways, respectively. The influence of ionic strength on k_H was accounted for by the relationship:

$$k_{obs} = k_d + k_H^o [H^*] \gamma_H \gamma_{MC} / \gamma_{\neq}$$
⁽²⁾

where k_{H}^{o} is the rate constant value at zero ionic strength and γ_{H} , γ_{MC} and γ_{\neq} are the activity coefficients of the proton, cryptate and transitionstate complex, respectively. Values of γ_{i} were calculated using the Davies equation [10]. The values of k_{d} and k_{H}^{o} obtained from plots of equation (2) are listed in Table 1.

The values of k_d in methanol-water are less than the corresponding values in water as expected [11]. In methanol-water the k_d values of the thallium cryptates increase in the sequence: $2.2.2 < 2.2.2_{\rm D} \ll 2_{\rm B} \cdot 2_{\rm B} \cdot 2 < 2_{\rm C} \cdot 2_{\rm C} \cdot 2 \ll 2.2 \, C_8$. The introduction of the decyl-side chain has little effect on the dissociation kinetics of the Tl⁺ and Pb²⁺ complexes in agreement with the results reported for the analogous alkali-cation cryptates [12]. The introduction of the benzo-groups into the cryptand structure has three effects; (i) increased rigidity resulting in a smaller effective cavity, (ii) decreased donor ability of the catechol-ether oxygen atoms and (iii) increased shielding of the cation from the solvent [1]. These factors combine to weaken the cryptand with Tl⁺ [13] and this decrease in stability is reflected in the large increase in the value of k_d. Similar behavior has been reported for the Ba2+ cryptates of 2.2.2 and 2B.2B.2 [14]. Saturation of the rings has little effect on the value of k_d compared to the value for 2_B.2_B.2 with thallous ion in methanol-water. A much larger effect is noted when the k_d values for the lead ion cryptates of 2_C.2_C.2 and 2.2.2 are compared. This may be due to the higher charge of Pb2+ and the increased shielding provided by cyclohexanogroups which would hinder solvation of the cryptate. The trends for the k^o_H values of the cryptates are not as distinct as those for the k_d values. However, for both cations, the k^o_H values for 2_{C} , 2_{C} , 2_{C} are much larger than those of the other cryptands. The values of k^o_H are 50- to 200-fold lower in methanol-water than the corresponding values in water, with the larger difference being

Ligand	Solvent b)	Tl*		Pb ²⁺	
		k _d , sec ⁻¹	$k_{\rm H}^{\rm o}$, ${\rm M}^{\rm -1}~{\rm sec^{-1}}$	k _d , sec ⁻¹	$k_{\rm H}^{\rm o}$, M^{-1} sec ⁻¹
2.2.2	H_2O^{c}	5.5 ±0.6	1050 ± 95	1.8×10 ⁻⁵	0.71
	M/W	0.10 ± 0.01	26 ± 1	< 10 ⁻⁵	4.0×10^{-3}
	M/W ^{d)}	0.12 ± 0.01	20 ± 1		
2.2.2 _D	H ₂ O	-	-	< 10 ⁻⁴	0.44
	M/W	0.45	37	< 10 ⁻⁵	3.0×10^{-3}
2 _B .2 _B .2	H ₂ O	102	4100	< 10-4	0.057
	M/W	6.2	63	_	-
$2_{\rm C}.2_{\rm C}.2$	H ₂ O	-	-	~0.002	13.3
	M/W	17.7	3500	$\sim 3 \times 10^{-5}$	0.056

 Table 1

 Rate Constant Values for Acid-Catalyzed Dissociation of Tl* and Pb^{2*} Cryptates at 25°C⁴

a) k_d values at $\mu = 0.1$ (Et₄NClO₄), k_H^o values at $\mu \rightarrow 0$.

b) M/W = methanol-water (90:10).

c) [15].

d) [16].

observed for the lead cryptates. This result is most likely a consequence of the lower dielectric constant of the methanol-water mixture compared with water.

ACKNOWLEDGEMENTS

This work was supported in part by the Petroleum Research Fund, administered by the American Chemical Society and the University of Oklahoma Research Council.

REFERENCES

- [1] J.M. LEHN, Struct. Bonding (Berlin), 16, 1 (1973).
- [2] J.M. LEHN, F. MONTAVON, Helv. Chim. Acta, 61, 67 (1978).
- [3] B. DIETRICH, J.M. LEHN, J.P. SAUVAGE, J. Chem. Soc., Chem. Commun., 15 (1973).
- [4] M. CINQUINI, F. MONTANARI, P. TUNDO, Gazz. Chim. Ital., 107, 11 (1977).
- [5] M. KIRCH, J.M. LEHN, Angew. Chem., Int. Ed. Engl., 14, 555 (1975).
- [6] R. GUNTHER, O. HAUSWIRTH, R. ZISKOVEN, J. Physiol., 284, 145P (1978).
- [7] W.H. MULLER, W.A. MULLER, Naturwissenschaften, 61, 455 (1974).
- [8] PH. BAUDOT, M. JACQUE, M. ROBIN, Toxicol. Appl. Pharmacol., 41, 113 (1977).
- [9] J.A. DRUMHILLER, J.L. LAING, R.W. TAYLOR, Anal. Chim. Acta, 162, 315-321 (1984).
- [10] C.W. DAVIES, «Ion Association», Butterworths, London, 1962, pp. 39-41.
- [11] B.G. Cox, J. GARCIA-ROSAS, H. SCHNEIDER, J. Am. Chem. Soc., 103, 1054 (1981).
- [12] B.G. Cox, P. FIRMAN, I. SCHNEIDER, H. SCHNEIDER, *Inorg. Chim. Acta*, 49, 153 (1981).
- [13] M.K. CHANTOONI JR., I.M. KOLTHOFF, Proc. Natl. Acad. Sci. USA, 78, 7245 (1981).
- [14] J.M. BEMTGEN, M.E. SPRINGER, V.M. LOYOLA, R.G. WILKINS, R.W. TAYLOR, *Inorg. Chem.*, 23, 3348 (1984).
- [15] J.A. DRUMHILLER, D.L. LUTON, R.W. TAYLOR, J. Am. Chem. Soc., submitted for publication.
- [16] R. GRESSER, D.W. BOYD, A.M. ALBRECHT-GARY, J.P. SCHWING, J. Am. Chem. Soc., 102, 651-653 (1980).

PS5.45 - MO

ANDREA MALDOTTI CARLO BARTOCCI ALBERTINO FERRI VITTORIO CARASSITI Istituto Chimico and Istituto di Chimica Biologica dell'Università di Ferrara Centro di Studio sulla Fotochimica e Reattività degli Stati Eccitati dei Composti di Coordinazione del C.N.R. Via L. Borsari, 46 I 44100 Ferrara

Italy

PHOTOCHEMISTRY OF IRON(III) PROTOPORPHYRIN IX IN OXYGENATED ALKALINE AQUEOUS ETHANOL. EVIDENCE FOR SUPEROXIDE RADICAL FORMATION AND ITS INVOLVEMENT IN THE PORPHYRIN DEGRADATION

The interest for the formation of superoxide in biological aerobic processes is on steady increase in connection with the auto-oxidation of dioxygen carrier hemoproteins as well as with its toxic effect on living systems.

In recent years, a number of very interesting studies on both the mechanism of formation of superoxide and its reactivity with respect to biological substrates have been reported [1].

We have recently published an ESR-spin trapping investigation on the photochemical behaviour of Fe(III) Protoporphyrin IX chloride (Fe(III)PPCl) in oxygenated water-ethanol mixed solvents [2]. The results obtained in that study allowed us to conclude that Fe(II) porphyrin and an ethoxy radical were formed in the primary photochemical process and that the oxygen interacted somehow with Fe(II) thus hindering a rapid cage back electron transfer. The mechanism proposed is reported in Scheme 1.

Scheme 1

