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of approximately 100°. These structural changes
are expected for the substitution of the oxo bridge
with sulfide.
NMR studies on the semimet and deoxy forms
reveal the N-H signals to be further downfield,
indicating that the extent of antiferromagnetic
coupling between the iron atoms is significantly
decreased. For the semimet azido complex, the
N-H resonances are found at 73 and 54 ppm
downfield with relative intensities of 2:3; these
have been assigned to the histidine N-H protons
coordinated to the ferric and ferrous sites, respec-
tively. Thus the azide is coordinated to the ferric
site, in agreement with resonance Raman data
showing the persistence of the azide-to-Fe(III)
charge transfer transition in this complex [6]. The
temperature dependence of these shifts is best fit-
ted with a J value of —10 cm - '.
The NMR spectrum of the semimet sulfido com-
plex is somewhat more complex. Five N-H reso-
nances are observed in the region of 23-54 ppm
downfield with relative intensities of 3:2:2:2:1.
The temperature dependences of these peaks show
both Curie and anti-Curie behavior, similar to
that observed for the 0-CH2 resonances of the
cysteines in reduced Fe 2 S 2 -ferredoxins [7]. The
data may be interpreted in terms of both possible
mixed-valent complexes with the unpaired electron
localized on one of the iron atoms, i.e. electron
transfer is slow on the NMR time scale.
Deoxyhemerythrin exhibits N-H resonances at 44,
46, and 62 ppm downfield. These signals are per-
turbed upon addition of azide with new resonan-
ces observed at 47, 66, and 77 ppm downfield.
These spectral comparisons show that azide can
coordinate to the iron sites in deoxyhemerythrin.
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RESONANCE RAMAN STUDY
OF THE HYDROXIDE ADDUCT
OF HEMERYTHRIN

Hemerythrin is the non-heme iron-containing res-
piratory protein of several marine invertebrates.
When 0 2 binds to the binuclear active site, the
two iron atoms are oxidized to the ferric state and
dioxygen is reduced to peroxide [1]. Methemery-
thrin, the unligated form of the protein in which
both irons are oxidized to the Fe(III) state, no
longer binds 0 2 , but readily binds small anions
such as N3 - , SCN - , OCN - , and CN - . At high pH,
it binds hydroxide to form hydroxomethemery-
thrin. X-ray crystallographic studies show that the
binuclear iron site of met- and oxyhemerythrin
contains a µ-oxo bridge [2]. This Fe-O-Fe moiety
gives rise to intense near-UV charge transfer tran-
sitions [3]. Excitation within these charge transfer
bands gives strong, selective enhancement of a Ra-
man peak near 500 cm -1 which has been assigned as
the symmetric Fe-O-Fe vibration, v s(Fe-O-Fe) [4,5].
Whereas most methemerythrins have only a single
Raman peak in the v s(Fe-O-Fe) region, hydroxo-
methemerythrin has a strong peak at 492 cm -1 ,
and a smaller peak at 565 cm - ' (Fig. la). Substi-
tution of 180 into the oxo bridge position causes
the 492 cm -1 peak to shift to 478 cm -1

(Fig. lc), prompting assignment of this peak as
v s(Fe-O-Fe). Preparation of hydroxomethemeryth-
rin in H 2 180, under conditions where the bridge
does not exchange, results in a shift of the 565
cm -1 feature to 538 cm -1 (Fig. lb). This shift
agrees with the calculated value (540 cm -1 ) for the
replacement of 1 60 by 180 in the iron-oxygen
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stretch of a bound hydroxide, and we now assign
it as such.
In contrast to the straightforward results from the
oxygen isotope experiments, preparation of hydro-
xomethemerythrin in D 2 0 causes several anoma-
lous shifts in the resonance Raman spectrum (Fig.
Id) [6]. The major peak at 492 cm -1 in H 2 O
(v s(Fe-O-Fe)) shifts to 517 cm - ' in D2 0. This shift
cannot be due to deuterium-induced conformation
changes of the protein since analogous peaks of
deuterium-substituted met-, azidomet-, and per-
chloromethemerythrin do not shift. In addition,
the iron-oxygen stretch of the bound hydroxide at
565 cm - ' shifts only 5 cm -1 in D2 0, which is less
than half the shift expected for the substitution of
OH - by OD - (calc. shift to 553 cm -1 ). This indica-

tes that the hydroxide ligand is involved in the
anomalous D 2 0 effect on v s(Fe-O-Fe).
Although the spectral shifts of hydroxomethe-
merythrin in D 2 0 are unusual, similar results have
been obtained for oxyhemerythrin [5]. Both
hydroxomet- and oxyhemerythrin show anoma-
lous deuterium isotope effects on ligand as well as
Fe-O-Fe vibrations. In addition, these forms of
the protein have v s(Fe-O-Fe) frequencies (492 and
486 cm -1 for hydroxomet- and oxyhemerythrin,
respectively) which are considerably lower than
those of the other ferric hemerythrins (507-516
cm -1 ) [4,5]. We have proposed that these effects in
oxyhemerythrin are the result of a hydrogen bond
between the proton of the hydroperoxide ligand
and the oxygen of the oxo-bridge. Because hydro-
xide is the only other methemerythrin ligand that
is capable of forming a hydrogen bond analogous
to that proposed for oxyhemerythrin, it is not un-
reasonable to propose a similar model for hydro-
xomethemerythrin. In this case, we suggest that
the proton of the bound hydroxide is hydrogen
bonded to the oxo-bridge. Though this appears to
be a strained structure, the strain may be respon-
sible for the large deuterium effect on
v s(Fe-O-Fe). We are currently studying model
compounds which contain elements of this propo-
sed hydroxomethemerythrin structure.
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PRELIMINARY STRUCTURAL STUDIES
ON BACTERIOFERRITIN

Bacterioferritin is a novel multimeric cytochrome
which appears to function both as an electron
transport protein and as a means of storing iron.
A cytochrome, named b 1 , was isolated from
Escherichia coli by DEEB and HAGER [1] who sug-
gested it was a key component of membrane elec-
tron transport systems in this organism. A similar
cytochrome (named cytochrome b557.5), but which
also contained non-haem iron was purified from
Azotobacter vinelandii by BULEN and co-workers
[2] and subsequently characterised more fully by
STIEFEL and WATT [3]. These authors showed
that the protein resembled mammalian ferritin in
several respects and identified it as a bacteriofer-
ritin. A protein from E. colt could be similarly
described [4], since it contained an «iron-core»
surrounded by a shell of protein, although its dia-
meter, measured from electron micrographs, was
somewhat smaller than that of ferritin and the
magnetic properties of its inorganic complex diffe-
red from those of ferritin's iron-core.
We report here preliminary X-ray crystallographic
data for three crystalline forms of bacterioferritin
isolated from E. coil grown anaerobically on ni-
trate. These crystals are monoclinic, tetragonal
and cubic in form. The monoclinic crystals grown
from aqueous solutions containing MnC1 2 have
cell dimensions a = 122.2 A, b = 209.6 A,
c = 118.6 A, a = 118.3° and space group P2 1 .
Tetragonal crystals grown from 2 M (NH 4 ) 2 SO4

solution, also containing MnC1 2 , have
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a = b = 210.61A, C = 145.0 A and space group
P42 2 1 2 but show marked pseudo-cubic symmetry.
Soaking the tetragonal crystals in tetrakisacetoxy-
mercurimethane solution causes conversion to a
cubic form with a= 146.9 A, space group I432.
We interpret these data in terms of a unit cell
containing two molecules each having 24 protein
subunits arranged in 432 molecular point
symmetry to give a packing diameter of 127
This now clearly shows that bacterioferritin does
indeed closely resemble horse spleen ferritin which
has a similar diameter and the same number of
subunits and symmetry, although it contains no
haem. Crystals of all three forms of E. coil bacte-
rioferritin diffract to high resolution (at least
1.6 ,À) and are all suitable for three dimensional
structure determination. This is now being under-
taken.
Structural relationships between the three crystalli-
ne forms of E. colt bacterioferritin, between the
E. colt and A. vinelandii proteins and between
ferritin and bacterioferritin will be outlined and
the functions of these exciting proteins discussed.
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