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REFERENCE STATE
IN TRANSIENT THERMAL
CONDUCTIVITY
MEASUREMENTS

A new, unambiguous way of defining the reference
temperature, Tr , for the thermal conductivity of

fluids measured with the transient hot wire
technique is presented. The analysis shows that a
previous evaluation of the reference temperature is
only exact for a particular set of circumstances
which are seldom realized in practice. In extreme
cases the two evaluations of the reference temperature
can lead to differences of as much as 1 K, causing an
uncertainty of about ± 0.3 % in the absolute values
of the thermal conductivity of liquids.

INTRODUCTION

In recent years the transient hot-wire method
has emerged as the most accurate technique
for the measurement of the thermal con-
ductivity of liquids [1, 2]. However, there
remain a small number of minor aspects of
the technique which must be considered in
order to achieve the highest accuracy under
all conditions. Among these is the evaluation
of the so called "reference temperature".
This is a correction that arises from the
variation of the fluid properties with tem-
perature during the measurement. According
to this correction the thermal conductivity
measured in an experiment is assigned to a
reference temperature, T r. , which is different
from the equilibrium, initial temperature of
the fluid, T o . The paper presents a new
analysis of this problem leading to an
unambiguous way of determining the refer-
ence temperature for a certain set of experi-
mental data.

THE REFERENCE TEMPERATURE
PROBLEM

The transient hot-wire technique for the
measurement of the thermal conductivity of
fluids is based on the solution of the Fourier
equation

_dT 
(Cp dt — C 2T

subjected to the boundary conditions

T(r,t) = To for t < 0	 (2)

q
	 = lim (r fi 

Tt ) for t>0 and r=0
47À 

(3)

T(r,t) = To for t > O and r = co (4)

In equations (1) to (4), T„ is the equilibrium
temperature of the fluid prior to a measure-
ment, q is the heat dissipation per unit lenght
of the wire and p, C p and A, are, the density,
heat capacity and thermal conductivity of

(1)

[3]
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the fluid respectively. The solution of this
equation yields, for the temperature rise of
the fluid at a radial position r, ,

q	 4ktOTid (r l, t) = T (r„ t) — T0 =	 In	
(5)

47rX	 r;C

where k is the thermal diffusivity of the fluid.
To account for unavoidable departures be-
tween the ideal model and any real instrument
several minor corrections, ST„ must be
added to the measured temperature rise, AT, ,
of the thin metallic wire (the practical heat
source), in order to recover ATid so that [3-8]

OTid = oTa, + STi (6)

However, one of the departures of the real
instrument from the ideal model cannot be
dealt with in this way. It is an assumption
of the ideal model that the physical properties
of the fluid are independent of temperature
and for real fluids this is not valid. Never-
theless, because of the relatively mild
dependence of the properties on temperature,
it is possible to represent the properties by
linear functions of temperature within the
range AT. Thus we write

A.(T, p) = a(To , p o) (1 + X AT) =
_ À0(1 + X AT)	 (7)

and

P Cp (T, p) = p Cp (To, P0) ( 1 + cpAT)
= p „Cp. (1 + 0,T)	 (8)

The Fourier equation may then be solved
again including the linear dependences sub-
ject to the modified boundary conditions

lim (r  T  ) — 	 q
r ^ p	 d 	 27rXo(1	 XAT)

(9)

The solution is

In [  4k0t  ] — — q  (7 ^) ln4 + 47rho  AT +
r; C	 47À0	 q

+ 27/1.0 X (vT Y

q

Thus, owing to the temperature dependence
of the fluid physical properties, a small
curvature occurs in a plot of lnt against AT.
In practice this curvature is so small that it
lies within the precision of individual meas-
urements of .AT and lnt. Furthermore, if the
average gradient of the curve, b, between
two times t, and t2 is evaluated, it is readily
shown from Eq (10) that

b-
 47À(Tr , p r)

q
where

1
T i. = T0 + 2 l OT(t l) + AT(t2) i ( 12 )

and

P r = p (Tr, Po)	 (13)

If it were practicable to determine the mean
slope experimentally Eq. (12) would always
be exact within the linear approximations
(6) and (7) . However, in practice the experi-
mental data points (AT, , lnt,) are subjected
to a linear regression in order to provide a
least squares estimate of the slope. In general,
this slope must differ from the true mean
slope and in such circunstances Eqs (11)
and (12) are not exact.

IMPROVED ANALYSIS

In order to provide an improved analysis of
the problem of the reference temperature it
is necessary to relate the least squares
estimate of the slope, obtained by linear
regression of a set of N experimental data
points, to the thermal conductivity at a
specific temperature. In other words, we
seek the two points of eq. (10) between
which its average gradient is equal to the
slope of the experimental linear regression.
In order to carry this through we first write
the solution (10) in the form

lnt _- A + B(0T) + C(AT) 2	(14)

If data (AT, , lnt,) which conform to this
equation are represented by the linear rela-
tionship

Int = A' + B'0T	 (15)(10)
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ln (tm/tn) 	47)to 1 +  1  ¡ (ATm +
AT,,„ - ATn 	q	 2

(22)

where

Tr=To+ST,*=T0+ 2 [ATm(tm)+ATn(tn)]

^ 
ATO 47r,^(Tr, P r ) 

q
(21)
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by means of a linear regression, then it is
easily shown that the slope B' is equal to
the average slope of curve (14) between the
points ATm (tm) and ATn (tn) , i. e.

B'	
In (tm/tn)B -

ATn
(16)

with

	ATm = Z -{ [Y2 - 4X] 1 /2 - Y	 (17)

	

AT„ = -  ^  ^ [Y 2 - 4X]' / 2 + Y 	 (18)

where

(ATi 2 ) 2 - ^AT i°^AT i

N^AT i 2 - (.r.AT 1 ) 2

n XAT i 2 - ZATi 2ZAT i

N^AT i 2 - (.S.'dT i )'-

This average slope then defines a thermal
conductivity at a temperature T r through
the equation

so that

the experimental points and is a weighted
average of the arithmetic mean of pairs of
points with a distribution function

t(AT i , AT; ) = (AT, - ATj ) 2 	(25)

This makes it clear that when the points are
uniformly distributed in AT(i.e.ATi+ 1 - AT i =
= constant) ST,* reduces to

ST,* = 2 (AT, + ATN)	 (26 )

involving just the first and last temperature
rises observed in a run. It is this result which
has been universally employed in the evalua-
tion of the reference temperature to date,
even when the distribution of points was not
uniform [3].
In many measurements the differences be-
tween the reference temperature defined by
Eqs. (11) and (22) are very small (- 0.1K )
[9], and are thus negligible. However, in some
measurements made in our laboratory [10, 11]
the distribution of points is distinctly non-
uniform and a reanalysis shows that the
difference between the two reference tem-
peratures can be as large as 1 K. A difference
of this magnitude contributes an error of
± 0.3 % to the reported value of the thermal
conductivity. It is therefore important in such
cases to employ the proper form of the refer-
ence temperature defined by Eq. (22).

X

Y

(19)

(20)

ST,* =
1  N^ (ATi) 3 - 1(ATi) 21ATi (23 )

2 	N,(AT i ) 2 - (1ATi) 2
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RESUMO

Apresenta-se uma nova definição de temperatura de
referência nas medidas de condutibilidade térmica de
fluidos pelo método do fio aquecido, a qual evita
alguma ambiguidade da definição anterior.
A presente análise demonstra que a definição ante-
rior só é exacta em certas condições particulares,
raramente conseguidas na prática. Em condições
extremas de trabalho as duas análises conduzem a
resultados para T r que podem diferir de 1 K, o que
introduz uma incerteza de cerca de ± 0,3 % nos valo-
res absolutos da condutibilidade térmica de líquidos.
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