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Although the classical principle of corresponding states dates

back to 1880, and its statistical-mechanical basis was firmly

established in the period 1939-1950, it is only in the past ten

years that its remarkable scope and accuracy have begun to be

fully appreciated. Improvements in experimental accuracy and

in knowledge about intermolecular forces have both contri-

buted to these recent advances. In 1972 Kestin, Ro, and Wake-

ham gave a remarkably accurate correlation, involving only two

adjustable parameters, for nearly all the low-density thermo-

dynamic and transport properties of the noble gases and their

multicomponent mixtures. They carefully avoided models of the

intermolecular forces on the grounds that the latter were ina-

dequate to do justice to the experimental data. Subsequently,

they were also able to correlate some properties of polyatomic

gases, but not all. These advances were due almost entirely to

improvements in the accuracy and range of experimental data.

Since then, important advances have also occurred in our kno-

wledge of intermolecular forces, and these can be used as the

basis for extensions and improvements to the two-parameter

correlation.

This paper briefly reviews the two-parameter correlation, and

then summarizes the improvements in the range and accuracy of
the correlation that have been achieved for the noble gases.

Finally, a short summary in given of one of the most interesting

crucial advances in knowledge of intermolecular forces, namely

direct numerical inversion of transport coefficients.

This paper is an edited version of the lecture delivered at the
Symposium on Transport Properties of Fluids, Lisbon (23-26
March 1982).

INTRODUCTION

The principle of corresponding states goes back
over 100 years, to J.D. van der Waals in 1880, in
connection with the equation of state and the criti-
cal constants of gases. It played an important role
around the turn of the century in the liquefaction
of the last of the so-called permanent gases, hy-
drogen and helium, by Dewar and by Kamerlingh
Onnes, respectively, who used it to predict boiling
points and other properties. Thereafter it was
widely applied to many other substances. In the
period of about 1939-1950, the molecular basis of
the principle was firmly established through statis-
tical mechanics, and it was extended to include
quantum effects and transport properties.
Unfortunately, the quantitative aspects of the prin-
ciple were often considered a bit dubious — it was
considered to furnish a useful correlation scheme,
but to have only moderate accuracy. Perhaps this
was at first caused by its association with the
approximate van der Waals equation of state, and
then by its over-enthusiastic application to so many
different substances. At any rate, it was essentially
abandoned by chemists and physicists as a subject
of serious study, although of course it was much
used by engineers.
Why do we now bother with a 100-year old theory
of only modest accuracy? In the first place, it
turns out that the accuracy and the range of pro-
perties covered are much better than had been
thought. Secondly, there have been important
advances in our knowledge of intermolecular
forces in the last ten years or so. Together, these
two developments have completely revitalized the
subject. The purpose here is to give a brief survey of
these developments.
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In 1972, KESTIN, Ro, and WAKEHAM [1,2] assem-
bled a large body of consistent, accurate results,
especially on the low-density gas viscosity, and
decided to try taking the principle of corresponding
states very seriously, at least for the noble gases.
To the surprise of nearly everyone, they achieved a
remarkable accuracy, an improvement of nearly
one order of magnitude. Moreover, they were able
to correlate nearly all the low-density thermodyna-
mic and transport properties of the noble gases and
their multicomponent mixtures. They needed to
assign only two parameters to each of the fifteen
possible pair interactions between two noble gas
atoms. For concreteness, the parameters can be
thought of as an energy parameter a representing
the depth of the potential energy well, and a range
or distance parameter a representing the interatomic
separation for which the potential is zero. However,
they carefully avoided using models of the poten-
tials on the excellent grounds that the latter — such
as the LENNARD-JONES (6,12) model — were inade-
quate to do justice to the experimental data, and
they based their results exclusively on general statis-
tical-mechanical theory and accurate experimental
measurements. The numerical values of E and a
were thus found by fitting (primarily) viscosity
data. Subsequently [3-5], they were also able to cor-
relate some properties of diatomic and polyatomic
gases, but not all.
These advances were due almost entirely to impro-
vements in the accuracy and range of experimental
data. But at about the same time there were impor-
tant advances occurring in our knowledge of inter-
molecular forces. Certainly for the noble gases it is
now safe to refer to the potential itself without un-
due fear of degrading the accuracy of the correla-
tions, and there is hope that the same will soon be
true for some of the simpler polyatomic gases. A
number of extensions and improvements to the
two-parameter correlation thereby become possible,
which are now largely worked out. Although the
details are rather voluminous [6,7], it is possible to
summarize the essential results succinctly.
This report is organized as follows. A brief review
of the basis of the two-parameter correlation is first
given, together with indications of where failure is
likely to start. Second, the most important new
developments on intermolecular forces are summa-
rized, and it is shown how they can be used to ex-
tend the range and accuracy of the two-parameter
correlation for the noble gases and their mixtures.

Finally, a short summary is given of one of the most
interesting recent advances in knowledge of inter-
molecular forces, namely the direct numerical inver-
sion of transport coefficients. Until recently, this
was thought to be impossible, both in principle and
in practice. The literature connected with all these
topics is understandably extensive, and only a few
of the key references are given here.

REVIEW OF TWO-PARAMETER
CORRELATION

The molecular theory underlying the principle of
corresponding states involves only very general
results from statistical mechanics, plus relatively
straightforward dimensional analysis. The pair
potential V(r) can always be written in a dimen-
sionless form as

V(r) = e f(r/a, a l , a2 , ...) ,	 (1)

where e and a are the energy and range parameters
already mentioned, and a l , a2 , ... are additional
dimensionless parameters characterizing the shape
(rather than the scale) of the potential. The funda-
mental assumption used by Kestin, Ro, and Wake-
ham can be divided into two parts:

(1) The function f(r/a, a ; ) is the same for all noble
gas pairs.

(2) the parameters a, have the same values for all
noble gas pairs.

The first part is required in order to have any cor-
responding states at all, and the second part allows
a correlation involving only the two parameters e

and a. Improved knowledge of V(r) enables us to
relax this second condition and thus to make exten-
sions of the correlation.
We can illustrate the success of the two-parameter
correlation with a few samples [1,3,4]. The top
part of fig. I shows a universal reduced collision
integral for viscosity, 1222, as a function of reduced
temperature, T* , for noble gases. These quantities
are defined as

5 (mkT/ 2.) 2 ^ -i _
a 2 ^ 22° Q Z S212 ' 2I7 f n , (2)

T* = kT/e ,

16

(3)
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Fig. 1

Two-parameter correlation for the viscosity collision integral as

a function of reduced temperature, T* =kT/e, for noble gases

(upper) and noble gas mixtures (lower). The horizontal lines
show the temperature ranges covered by the experimental data

where m is the molecular mass, k is Boltzmann's
constant, 71 is the viscosity, and f, is a higher-order
kinetic-theory correction [8] that deviates only
slightly from unity. The curve shown is arranged to
fit the points, which are seen to all lie on a single
curve with remarkable precision (about 0.4% devia-
tion, on the average). The bottom part of fig. 1
shows a similar plot for noble gas mixtures. Here
the viscosity is not the total mixture viscosity, but
only the interaction viscosity, 7112, which is equiva-
lent to the viscosity of a hypothetical pure gas
having the given V(r) and a mass m = 2m 1 m 2/(m 1 +
+m2 ) [8]. The curve here is the same as the one
for the single gases, with no tinkering. Fig. 2 shows
a similar result for some polyatomic gases and
gas mixtures. Again the curve is the same as in
fig. 1, with no adjustment.

Fig. 3 shows the reduced second virial coefficient,

B * =B(T)/(? 7rN oa 3) ,
3

(4)

where N o is Avogadro's number, as a function of
T* for noble gases. The correlation is quite good.
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No comparison is shown for noble gas mixtures
because of the scarcity of accurate measurements.
The lack of a comparison for single plyatomic gases
is more significant — here the correlation fails. This
was no surprise at the time, because it was known
that the second virial coefficient is much more sensi-
tive to the non-spherical parts of the potential than
is the viscosity [9]. What was somewhat surprising
was the fact that the viscosities of polyatomic gases
were so well correlated with only two parameters.
We shall see the reason for this is the next section.
If accurate data were available at lower and higher
temperatures, we might expect to see some devia-
tions from the excellent correlations illustrated in
figs. 1-3, but as far as direct experimental results
can tell us, a two-parameter correlation is adequate.
To do better we must know something about V(r),
either from theory or from some entirely different
type of measurement whose only link to thermody-
namic and transport properties is indirectly through
V(r).
A qualification must be added at this point.
Deviations are seen for some noble gas pairs at
lower temperatures [1], but these are quantum
deviations, not deviations from a two-parameter
correspondence of V(r). That is, even if the poten-
tials scaled strictly according to the assumptions
of Kestin, Ro, and Wakeham, there would be
deviations at low temperatures because the colli-
sions do not follow classical mechanics. A third
parameter is then needed, but it is so obviously
available that it is not even regarded as á para-
meter — it is the atomic mass. It usually is introdu-
ced through the so-called de Boer parameter, A*,
which is a reduced de Broglie wavelength [10],

A* - h/a(me) 2 , ( 5)

where h is Planck's constant. These quantum devia-
tions are virually impossible to isolate by the
methods of Kestin, Ro, and Wakeham, and refe-
rence to V(r) is necessary.

EXTENSIONS BASED ON INTERMOLECULAR
FORCES

A — ADVANCES IN DETERMINATION
OF V(r)

Fifteen years ago, a review [11] of intermolecular
forces closed with the following remark: "We seem
to be on the verge of accurate determinations of

`true' potential energy curves for simple atoms".
This prospect seems now to have been realized, at
least for many of the noble-gas interactions. The
specific advances in our knowledge of V(r) that have
been crucial for extending and improving the prin-
ciple of corresponding states are as follows:
(1) Development, by SMITH, MAITLAND, and
coworkers [12], of numerical methods for direct
inversion of measured transport coefficients to
find the potential, without any explicit assumption
about the functional form of the potential.
(2) Collection of a body of experimental data,
largely by Y.T. LEE and his coworkers [13], on the
scattering of beams of noble gases by noble gases
in the thermal energy range.
(3) Accurate values of the coefficients of the long-
range dispersion energy are now available through a
combination of quantum theory plus dielectric and
optical data [14].
(4) Accurate information on the repulsive wall of
the potential is now available from a synthesis [15]
of theoretical calculations [16,17] and high-energy
beam scattering [18].
In addition, two other advances have been helpful
but not crucial:
(5) Determination of vibrational levels in noble-
gas dimers from their vacuum ultraviolet absorp-

tion spectrum [19]. The data can be inverted by the
RYDBERG-KLEIN-REES method [11] to find the
width of the potential well as a function of its
depth.
(6) Direct inversion of second virial coefficients
[20], similar to the inversion of transport coeffi-
cients in (1) above.
As a result of these advances, we can now see
directly that V(r) does not scale perfectly with only
two parameters, even for the noble gases. This is
illustrated in fig. 4, which shows V/e vs. r/r m ,
where r m is the position of the potential minimum,
for several noble gas systems for which the poten-
tials have been rather accurately determined
[21-24]. Although the correspondence is rather
close around the bottom of the potential well,
deviations are apparent at both smaller and larger r.
This result suggests two questions:
(1) How do the deviations shown in fig. 4 affect

the gas properties?
(2) What new parameters are needed to charac-

terize these deviations?
Before answers to these questions are attempted,
it is interesting to make a short digression to

4	 Rev. Port. Quím., 25, 1 (1983)
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Reduced plot of noble-gas potentials, showing deviations from

correspondence at large and small separations

illustrate some of the insight that can be obtained
through consideration of V(r). It was mentioned
previously that it was a bit puzzling why the two-
-parameter correlation worked so well for viscosi-
ties of polyatomic gases. A direct inversion [25] of
the viscosity correlation curve of figs. 1 and 2
showed that only the repulsive wall of V(r) was
involved (i.e., r<r m) in the temperature range
covered by the correlation. It is not surprising that
this rather featureless section of V(r) can be fitted
with only two parameters, but reference to fig. 4
shows that an adjustment that makes the repulsive
walls agree will spoil the agreement of the wells. The
correlation based on viscosities will therefore fail
for other properties — such as second virial coeffi-
cients — that depend on the well region of the
potential.

B — NEW PARAMETERS NEEDED

The long-range part of V(r) has the form

V(r)= —C 6 /r 6 —C 8 /r 8 —C 10 /r 10 —...	 (6)

and the coefficients C6, C8, ... have been deter-
mined from quantum theory plus dielectric and
optical data [14]. This part of the potential is domi-
nant in determining the transport coefficients at low
temperatures, but not the second virial coefficients.
If a two-parameter principle of corresponding states
held to very low temperatures, we would find that
the reduced parameters C6 * = C 6 /ea6, C8 * =C 8ea8,
... were the same for all the noble gas pairs. Table 1

Table I

The low-temperature scaling parameter, C6* = C6/ea6

He	 Ne	 Ar Kr	 Xe  

2.681

2.429

2.210

Kr

shows that the C6* have systematic variations.
A low-temperature correlation of transport coeffi-
cients thus requires the introduction of C6 * as
a new parameter, in addition to e and a. KESTIN,

Ro, and WAKEHAM [1] were of course well aware
of all this, but the accuracy of the C6 coefficients
available to them was still too low to justify any-
thing beyond the assumption of a universal value
for C6 * . The values of C8 * (not shown) also vary,
but their effect on the transport properties is small
enough that the variations can be neglected for
most purposes.
The second virial coefficients at low temperatures
are determined by the region of the potential
around the minimum (dimer formation) [9], and
fig. 4 shows that the two-parameter correlation
holds in this region. Hence there is no need to intro-
duce another new parameter representing, for ins-
tance, the reduced curvature of the potential at the
minimum.
Both the transport and equilibrium properties at
high temperatures depend on the short-range repul-
sive portion of V(r), which can be conveniently
represented by an exponential function,

V(r) = V o exp( — r/e) ,	 (7)

where V o and a are energy and range parameters.
Since there are only two parameters, it is obvious
that a two-parameter correlation must hold at high
temperatures. Unfortunately, this turns out to be a
different correlation than that given by the para-
meters a and a, as shown by the fact that V á - V 0/e
and e* = e/a are not the same for all noble gas
pairs, as recorded in Table 2. The values of V o

and e in Table 2 were obtained from various theo-
retical calculations and scattering results [15,16].
The high-temperature correlation of transport and
equilibrium properties therefore requires the intro-
duction of Vó and e* as additional parameters.
To summarize, the present extension of the prin-
ciple of corresponding states requires five para-
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Table 2
The high-temperature scaling parameters, V0 * = Vale and e * = e/a

Vo * x 10 -s

He	 Ne	 Ar
	

Kr	 Xe

	10.89	 13.37

	

9.929	 11.20

	

4.849	 4.878

Kr	 14.491	 4.337

Xe	 3.898

e *

He
	

Ne	 Ar
	

Kr	 Xe

	0.0772	 0.0764

	

0.0786	 0.0785

	

0.0833	 0.0835

	

0.0831	 0.0837

Xe 0.0854

meters arising from the potential — e, a, C6 * ,

V, and Q * — plus the quantum parameter A*.
As an example of how such an extension appears,
fig. 5 shows the correlation curves for the viscosity

o

Fig. 5

Correlation curves for 0(2,21; the reduced collision integral for
viscosity. The single curve at intermediate T * is the region
of the two parameter (e, a) correlation. At low temperatures the

additional parameter C6' is needed, and at high temperatures the

repulsion parameters (V0, a *) are needed

reduced collision integral, 12 (2,2)*, defined in Eq. (2).
The region where only one curve appears is the same
as represented by the original two-parameter correla-
tion curves in figs. 1 and 2, but the result is plotted
in a different way to take advantage of the theoreti-

cally known asymptotic behavior of 12 (2,2)* at low
T* . The splitting of the single curve into families ap-
pears at both low and high temperatures. This split-
ting is indexed by C6 * at low temperatures and by
(Vó , Q *) at high temperatures.

C — EXTENSION OF CORRESPONDING
STATES PRINCIPLE

Here we set out explicitly what advantages can be
obtained in a corresponding-states correlation by
knowledge of V(r), but can give only a brief selec-
tion of actual results.
(1) The range of validity of the two-parameter (e,
a) correlation can be specified more precisely. Out-
side of this range, deviations gradually set in and
more than two parameters are needed. As an exam-
ple, notice that the correlation for 1222 in fig. 1
appears to be universal up to T * = 90, whereas in
fig. 5 it does not extend beyond T * = 30. A closer
look at fig. 1 shows that the high-temperature end
of the correlation is based entirely on He, and is
thus not demonstrated to be universal.
(2) Values of one property that is known accura-
tely can be used to refine or predict other properties
that are known less accurately from experiment.
As an example, viscosity is usually measured with
substantially greater accuracy than are diffusion
coefficients and thermal diffision factors. By pro-
ceeding through V(r) we can use the accuracy of
viscosity to improve that of diffusion coefficients.
(3) Joint analysis of two properties through the
potential can improve the accuracy and range of
validity of both, because different properties give
information on different regions of the potential.
For example, the second virial coefficient at very
low temperatures is determined by the region near
the potential minimum, whereas the viscosity at
very low temperatures is determined by the long-
range tail of the potential. Thus, viscosity data
at only moderately low temperatures could be used
to specify the second virial coefficient at very
low temperatures, or vice versa.

(4) Data not directly related to the thermodynamic
and transport properties of the gases can be used
to extend the temperature range of the correlations
to both lower and higher temperatures, as well as
to improve accuracy in the original temperature
range. Such data include scattering measurements,
theoretical calculations, dielectric and optical data,
and spectroscopic measurements that locate the

He 8.50 10.60 9.740

9.235

5.117  
Ne 111.09     
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bound states in the potential well. This has allowed
the temperature range of the correlation to be
extended from virtually 0 K to the onset of first
ionization.
(5) Statistical-mechanical theory can be used with
knowledge of V(r) to find useful asymptotic
forms for the temperature dependence of gas pro-
perties, and to include new properties. An example
of the first is shown in fig. 5. An example of the
second are the quantum corrections for the second
virial coefficient, which can be isolated through
V(r) but which are virtually impossible to extract
accurately from experimental data alone.
Space permits only a few selected examples of the
correlations obtained. A deviation plot for the vis-
cosity of krypton is shown in fig. 6, including the

1000

T(K)

2000

Fig. 6

Deviation plot for the viscosity n of Kr as a function of tempe-

rature. A(%) = 100(expt — calc)/calc.

0 Ref. [26]; • Ref. [271; IV Ref. [281;

b Ref. [29], 	 Ref. [24]

experimental data considered best [26-29] and the
results calculated from an accurate potential [24].
A similar deviation plot for the second virial coef-
ficient of krypton is shown in fig. 7, together with
experimental data [30-34]. The agreement shown in
these two figures is typical. It should be remem-
bered that the parameters a and a have been
adjusted to optimize the fit, but the parameters
C 6 * , V0 , and Q * are specified independently.
The deviation plot for the self-diffusion coefficients
of the noble gases, shown in fig. 8, supplies an inde-
pendent test of the correlations, since these data
were not used in any parameter adjustment.
Comparable results are obtained for other proper-
ties, and for mixtures of any number of compo-
nents.

Fig. 7
Deviation plot for the second viria! coefficient B of Kr as a

function of temperature

0 Ref. [30]; ❑ Ref. [31]; A Ref. [32]; • Ref. [33];

A Ref. [34], 	 Ref. [24]

Fig. 8

Deviation plot for the self-diffusion coefficients, D 11 , of the
noble gases as a function of temperature. A(%) = 100(expt -

- talc)/calc.
O, a He; A Ne; ❑ , n Ar;® Kr; VXe

AN EXAMPLE: DIRECT INVERSION
OF GAS VISCOSITY

Historically, the earliest estimates of intermole-
cular potentials were based on macroscopic pro-
perties, such as second virial coefficients or low-
-density transport coefficients, and proceeded
through parameterized models. Until fairly re-
cently, computing limitations restricted the number
of adjustable parameters to two or three, so that
the models used were always a bit too crude. The
direct inversion problem, proceeding from data to
potential without explicit assumption of a mathe-
matical model, was considered hopeless both in

+4

-4
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principle and in practice, since there were direct
demonstrations that such inversions cannot be uni-
que [3]. Thus one of the surprising results of the
past decade has been the development of direct
inversion methods for both transport and second
virial coefficients. The unexpected success of
these methods is, in fact, still somewhat puzzling,
although some progress has been made in unders-
tanding their success [12]. Here we give a brief
account of direct inversion, using viscosity as an
example.
From Eq. (2) we see that V(r) is entirely con-
tained in the quantity 02 1122 , or in 02 11 (2 . 2)*, which
is a thermally averaged cross section [8],

7a 211 (2,2)* =

= [6(kT) 4] -1 0
  

°'Q (2)(E)exp( — E/kT)E 3dE ,	 (8)

where E is the relative energy of collision. Two
further layers of integration still shield V(r):

Q (2)(E)=3ir o i °° [1 —cos 2B(E, b)]b db ,	 (9)

f 
B(E, b) = ir- 2b ^ J °°[1— 

bz 
—

V(r) , z r -2dr ,	 (10)
°	 r  E

where O is the angle of deflection in a collision of
energy E with impact parameter b.
The key idea is that ,l at a given T is determined by
the interaction of two atoms over only a small range
of separations. This is surely not obvious from
Eqs. (8)-(10), but we return to the point later. This
range is centered around some distance r, such
that V(F) is of the order of kT, and u 211 12,21* is
about equal to F2 . This result is known to be
roughly true, and we can make it exact by defining
a suitable function G such that

G kT= V(r) ,	 (11)

F2 = a z fl c2,21' (12)

These quantities are illustrated in the upper part of
fig. 9. In general, G depends in a complicated way
on V(r) and T, but a remarkable feature emerges for
potentials with the simple shape shown in fig. 9-G
depends almost entirely on the single variable T * ,
and is relatively insensitive to details of the shape
of V(r). A typical function G(T *) is shown in the

°

-0c

08 	
01	 10	 w0

Reduced temperature, T

Fig. 9

Upper; Significance of G and F . Lower: Typical inversion

function G(T')

lower part of fig. 9. This almost miraculous beha-
vior of G makes a direct inversion possible.
First a rough model of V(r) is used to calculate a
first approximation to G(T *). The values of F are
known from the measured 77(T) according to Eqs.
(2) and (12). The corresponding values of V(F) are
then found from Eq. (11), using the first approxi-
mation to G(T*). This step requires the assumption
of a provisional value of E. From the series of mea-
sured points constituting r7(T), a corresponding
series of points V(F) is thus obtained. (Actually
F(V) is obtained). This V(F) is then used to calcu-
late an improved approximation to G(T *), and the
process is repeated until V(F) becomes stable. Then
this V(F) is used to calculate ,7(T) for comparison
with experiment. The value of e is found by nume-
rical search to be the one that produces the best fit
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of the data. The results are remarkably good when
V(r) has a reasonably simple shape (e.g., as in
fig. 9). How is this possible?
The first question to consider is how V(r) manages
to survive three layers of integration. We can see
how this happens from a closer examination of
Eqs. (8)-(10). From Eq. (10) we find that the domi-
nant contribution to 0 for given b and E comes
from the region of r near r 0 , the distance of closest
approach — the integrand is infinite at r 0 . From
Eq. (9) we notice two things: the factor (1 —cos 2 0)
suppresses small-angle scattering, and the factor b
db emphasizes collisions at large impact parame-
ters. The appearance of b db is a result of the three-
-dimensional nature of the problem. The result is
that Q (2) at a given E is dominated by a very small
range of b (or, equivalently, of r 0) in which both 0
and b are simultaneously large. Thus V(r) survives
the second integration. The third integration of
Eq. (8) has a peaked weighting factor of E 3 exp
(—E/kT), which only smears the results a bit wi-
thout washing them out entirely.
The second question to consider is how the inver-
sion manages to work, despite demonstrations that
it cannot be unique for the general case. Here our
best hope is to make a connection with other inver-
sion problems in physics that have already been
worked out, of which there are quite a number [35].
Suppose we consider the surface of 1 0 1 as a func-
tion of E and b, as shown in fig. 10. If we slice the
surface at fixed b (or at fixed angular momentum),
the resultant projection of O b(E) can be inverted. So
can the projection O E(b) resulting from a slice at
fixed E. If we examine in more detail the calcu-
lation of Q 12kE), we find that the crucial small
range of b or r 0 that determines Q(2) always corres-
ponds to a nearly constant value of the deflection
angle, approximately 101 = 1/7r. Thus the informa-
tion contained in j(T) is roughly equivalent to kno-
wing b as a function of E at constant 101 = 1 /ir,
which is the third orthogonal slice of the (I 0 J , b, E)
surface (lower half of fig. 10). It is at least plausible
that an inversion is possible for b 6(E) if it is possi-
ble for O b(E) and O E(b), and more detailed conside-
rations show that this is so [12].
The problem of uniqueness still remains. It is clear
that some extra information has to be included for
uniqueness, and that this occurs through implicit
assumptions about the "shape" of V(r). This has
been somewhat clarified by the use of simulated
experimental data generated from a known V(r),
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Fig. 10
Upper: Three-dimensional (lei, b, E) surface. Lower: A slice

through this surface at constant 1 0 1 = 1/ir

into which various pathological feactures are intro-
duced one by one. But many fascinating questions,
both fundamental and practical, remain to be
answered.

CONCLUDING REMARKS

I hope that this short review has given some
insight into one small aspect of recent work on

9



E.A. MASON

transport properties. Even with a subject as old
as the principle of corresponding states, there is
much to be learned. Indeed, like all good scientific
problems, recent work has raised at least as many
questions as it has answered. Here are two. First,
why is the extended principle of corresponding
states so remarkably accurate for noble gas pairs?
There must be an amazing similarity among the
potentials involved, which persists to a very
subtle degree on the energy scale at which quantum
chemists currently make their calculations. It seems
too much to believe that all this is merely for-
tuitous, but there is so far no inkling of a funda-
mental explanation. Second, why is the direct inver-
sion of transport coefficients so successful? All the
known mathematical theorems seem to argue
against it, and it is easy enough to produce patho-
logical cases that fail, but the method goes right
on being practical. One is reminded of the old
parable of the bee and the aeronautical engineers.
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