C. OTERO AREAN* M.L. RODRIGUEZ MARTINEZ J.M. RUBIO GONZALEZ

Departamento de Química Inorgánica Facultad de Ciencias OVIEDO (Spain)

A. MATA ARJONA

Departamento de Química Inorgánica Facultad de Ciencias GRANADA (Spain)

SYNTHESIS AND CRYSTALLOGRAPHIC STUDY OF Cd_xNi_{I-x} Ga₂O₄ SPINELS **

 $CdGa_2O_4$, $NiGa_2O_4$ and four mixed spinels $Cd_xNi_{1.x}Ga_2O_4$ (x=0.25, 0.50, 0.70 and 0.85) were prepared, in polycrystalline form, by solid state reaction (at 1273 K) in mixtures of CdO, NiO and Ga_2O_3 . X-ray diffraction analysis was used to determine the lattice parameter, a_o oxygen parameter, u, and cation distribution for each spinel. The lattice parameter was found to increase, almost linearly, from $a_o=826.1$ pm for x=0 up to $a_o=860.1$ pm for x=1; the u parameter also increases continously, from 0.385 up to 0.392, along the same composition range. Ni^{2+} ions were found to occupy octahedral sites in all cases, whilst the Cd^{2+} ion showed a pronounced tetrahedral preference. The Ga^{3+} distribution changes with the composition parameter x; thus, the proportion of tetracoordinated Ga^{3+} decreases from 46% down to 7,5% as x is raised from 0 to 1.

1 - INTRODUCTION

The distribution of cations among the available tetrahedral and octahedral sites in spinels is governed by their relative site preference energy [1-9], and the equilibrium configuration is a function of temperature, pressure and composition [10-15]. Thus, in a binary spinel (with only two different cations) the ionic partition can only be modified through changes of either temperature or pressure (or both), and the available cation distribution range is often quite small. However, in mixed spinels (with more than two cations) gradual changes in chemical composition often bring about substantial variations in cation distribution [15-17]; hence, solid solution formation between two end menbers, affords a particularly good opportunity to explore the relative preference of different cations for the tetrahedral or ocatahedral coordination.

The present paper reports the results of a structural investigation, by X-ray diffraction, of the mixed spinels $Cd_xNi_{1-x}Ga_2O_4$. The Ni^{2+} ion is known to have a strong octahedral preference [3,4,18], whilst Cd^{2+} shows a pronounced tetrahedral preference in binary oxidic spinels [2,8]. Thus, the degree of inversion of the mixed spinels $Cd_xNi_{1-x}Ga_2O_4$ is expected to increase markedly on passing from $CdGa_2O_4$ to $NiGa_2O_4$.

RUDDORFF and REUTER [19], DATTA and ROY [20], and HUBER [21], among others, have studied the structure of the simple CdGa₂O₄ spinel. NiGa₂O₄ has been studied by GREENWALD et. al. [22], and by PLYUSCHEV et. al. [23], among others.

2 — EXPERIMENTAL

SPECIMEN PREPARATION

Pure CdGa₂O₄, pure NiGa₂O₄ and four Cd_x Ni_{l-x}Ga₂O₄ (x = 0.25, 0.50, 0.70 and 0.85) solid solutions have been investigated. The starting materials were Ga₂O₃ and NiO, supplied by «Koch-Light Laboratories» with a nominal purity of 99.99% or higher, and CdO Merck «pro analysi». To prepare the spinels, the appropriate amounts of the component oxides were mixed, and fired in air at 1273 K. To avoid losses of CdO, which is appreciably volatile at 1273 K, an additional amount of this oxide was placed in the reaction tube and kept at a temperatu-

^(*) Correspondence to: Dr. C. Otero Arean, Departamento de Química Inorgânica, Faculdad de Ciencias, Universidad de Oviedo (Spain).

^(**) Communication presented at VII Congresso Iberoamecano de Cristalografia, Coimbra, September 1981. Manuscript received 29.3.1982.

re slightly higher than the reacting oxide mixture, thus providing a local atmosphere saturated with cadmium oxide vapour. More details of the experimental set up will be given elsewhere [24].

The progress of the reaction was followed by X-ray diffraction. When the diffractograms showed no trace of the initial oxides the samples were heated at 1273 K for 24 hours and quenched in liquid nitrogen.

X-RAY ANALYSIS

Lattice parameters and diffraction intensities were obtained using a Philips X-ray diffractometer equipped with a graphite crystal monochromator and scintillation counter. CuK_{α} radiation was used throughout. Lattice parameter values were determined from diffractograms obtained at room temperature (294 \mp 5 K) using NaC1 (a_o=564.02 pm) as an internal standard, a scanning rate of 1/4° min⁻¹(2 θ) and a time constant of 4 s. Diffraction intensities were determined from the number of impulses accumulated in the counter; allowance for background was made by counting the intensity at each side of every diffraction line over a time interval long enough to attain a small statistical error [25]. 12-18 diffraction lines were measured for each spinel.

3 — RESULTS AND DISCUSSION

Mean values of the lattice parameter, a₀, calculated from six diffraction lines for each sample, are shown in Table 1. A continuous increase in a₀ with the composition parameter x may be observed. This fact, and the observed absence in the diffractograms of other crystalline phases apart from the spinel one, provide clear evidence of the formation of a series of solid solutions between CdGa₂O₄ and NiGa₂O₄

Table 1 Lattice parameters, a_{o} for $Cd_{x}Ni_{1-x}Ga_{2}O_{4}$ spinels

x	a _o (pm)
0	826.1
0.25	836.0
0.50	844.2
0.70	850.6
0.85	855.7
1	860.1

The ionic radius of Cd^{2+} is 38% greater than the corresponding value for the Ni^{2+} ion [26], this explains the observed increase of a_0 as the composition parameter is raised, from x=0 to x=1, in $Cd_xNi_{1-x}Ga_2O_4$. The a_0 value found for $NiGa_2O_4$ ($a_0=826.1$) is very close to those of $a_0=825.8$ pm reported by Greenwald et. al. [22], and $a_0=826.2$ pm given by the NBS [32]. For $CdGa_2O_4$ the present value ($a_0=860.1$ pm) agrees with those of $a_0=860.2$ pm and $a_0=860.1$ pm givem by Datta and Roy [20] and by Otero Arean [27], respectively; the value of $a_0=839$ pm reported by Ruddorff and Reuter [19] appears to be too small, the discrepancy could be due to a slight deviation from stoichiometry.

The oxygen parameter, u, and cation distribution for each spinel were determined applying a Monte Carlo computer program [28] to the method proposed by FURUHASHI et. al. [29]. This method is based on the linear relationship:

$$\ln(I_{hkl}^{obs}/I_{hkl}^{cal}) = \ln k - 2B_{eff} \left(\sin \theta_{hkl}/\lambda\right)^2 \tag{1}$$

where I_{hkl}^{obs} are the experimentally observed intensities, I_{hkl}^{cal} the intensities calculated for different diffraction lines and simulated structures, k is a scale factor, B_{eff} the temperature factor, θ_{hkl} the diffraction angle and λ the wavelenght of the radiation used. The computer program takes into account the Lorentz-polarization and multiplicity factors. Atomic scattering factors were calculated according to the equation:

$$f(\lambda^{-1}\sin\theta) = \sum_{i=1}^{4} a_{i} \exp(-b_{i}\lambda^{-2}\sin^{2}\theta) + c$$
 (2)

using the coefficients, and corrections for anomalous scattering, given in the International Tables [30]. The Monte Carlo computer program applies Furuhashi's method 70 times to each spinel; in each run a value of the random error, following the impulse count statistics [25], is added to the experimentally determined counter readings corresponding both to the diffraction lines and to the background intensity. The average values obtained for the oxygen parameter and cation distribution, corresponding to each spinel, are shown in Table 2; numbers in brackets indicate the standard deviation of each parameter, in units of the last significant figure. The absolute value of the linear regression

Table 2									
	Oxygen Parameter, u, and cation distribution for CdxNi1-xGa2O4 spinels								

	u	Tetrahedral		Octahedral			
x		Cd ²⁺	Ni ²⁺	Ga ³⁺	Cd ²⁺	Ni ²⁺	Ga ³⁺
0	0.3855(2)	=	0.080(4)	0.920(4)	-	0.920(4)	1.080(4)
0.25	0.3850(15)	0.250(5)	0.049(9)	0.701(11)	0.000(5)	0.701(9)	1.299(11)
O.50	0.3873(3)	0.500(5)	0.002(3)	0.498(7)	0.000(5)	0.498(3)	1.502(7)
0.70	0.3905(2)	0.663(3)	0.000(1)	0.337(3)	0.037(3)	0.300(1)	1.663(3)
0.85	0.3913(20)	0.749(11)	0.002(35)	0.249(46)	0.101(11)	0.148(35)	1.751(46
1	0.3924(2)	0.850(3)	_	0.150(3)	0.150(3)	_	1.850(3)

coefficient found in the adjustment of equation (1) fell, in all cases, between 0.85 and 0.97.

The oxygen parameter (Table 2) was found to increase continuously with cadmium content, from 0.3855 in NiGa2O4 to 0.3924 in CdGa2O4. The slight decrease observed in Cd_{0.25}Ni_{0.75}Ga₂O₄ (u = 0.3850) is not considered to be significant. The large ionic radius of Cd2+, 80 pm in four-fold ccordination [26], together with the observed fact that this cation occupies preferentially tetrahedral sites, must be responsible for the increased value of u as x is raised. It is well known that the tetrahedral interstice expands more rapidly than the octahedral one when u increases. The former is in fact larger than the latter for u>0.3875. The results for CdGa₂O₄ and NiGa₂O₄ (Table 2) are close to the values of u = 0.390 and u = 0.387 given by Garcia Diaz [31] and Greenwald et. al. [22], respectively, for these two compounds.

As shown in Table 2, the Ni²⁺ ion occupies almost exclusively octahedral sites. This is indeed the beahaviour to be expected from a d8 ion, which must find a considerable stabilization in octahedral interstices through crystal field effects [3-5]. For Cd2+ and Ga3+ (d10 ions) convalency effects should result, according to GOODENOUGH and LOEB [2], and Blasse [8], in a preference for the tetrahedral coordination. The experimental results show that such a preference is greater in the case of Cd2+. This is why CdGa₂O₄ is only 15% inverted. The combined effects of Ni2+ and Cd2+, the former anchored in octahedral sites and latter occupying tetrahedral sites, condition the behaviour of Ga³⁺ whose coordination symmetry is strongly dependent on the composition parameter x. Thus, the proportion of tetracoordinated Ga3+ decreases continuously as x is raised, from 45% in NiGa₂O₄ down to 7.5% in CdGa₂O₄.

Table 2 shows that NiGa₂O₄ is, very nearly, a totally inverse spinel (at 1273 K), which agrees with the results found by GREENWALD et. al. [22] and by PLYUSCHEV et. al. [23]. For CdGa₂O₄ we have found an inversion degree of 15% (at 1273 K). Previously reported values are: 0% (RUDDORF and REUTER [19]), 22.5% (HUBER [21]) and 16% (GARCIA DIAZ [31]).

REFERENCES

- E.J.W. VERWEY, E.L. HEILMAN, J. Chem. Phys., 15, 174 (1947).
- [2] J. B. GOODENOUGH, A. L. LOEB, Phys. Rev., 98, 391 (1955).
- [3] J. S. DUNITZ, L. E. ORGEL, J. Phys. Chem. Solids, 3, 20 (1957).
- [4] D. S. McClure, J. Phys. Chem. Solids, 3, 311 (1957).
- [5] A. MILLER, J. Appl. Phys., 30, 245 (1959).
- [6] E. W. GORTER, Philips Res. Rept., 9, 295, 321, 403 (1962).
- [7] J. SMIT, F. K. LOTGERING, R. P. VAN STAPELE, J. Phys. Soc. Japan, 17, 268 (1962).
- [8] G. Blasse, Philips Res. Rept. Suppl., n.º 3 (1964).
- [9] L. HERMANS, J. WEENK, W. VAN GOOL, Z. Phys. Chem. N. F., 88, 15 (1974).
- [10] A. N. Men, Izv. Akad. Nauk SSSR, Ser. Fiz., 25, 1385 (1961).
- [11] H. SCHMALZRIED, Z. Phys. Chem., 28, 203 (1961).
- [12] A. NAVROTSKY, O. J. KLEPPA, J. Inorg. Nucl. Chem., 29, 2701 (1967).
- [13] R. K. DATTA, R. ROY, J. Amer. Ceram. Soc., 50, 578 (1967).
- [14] F. A. Kroger, The Chemistry of Imperfect Crystals, North-Holland, Amsterdam (1974).
- [15] F. C. ROMEIJN, Philips Res. Rept., 8, 321 (1953).
- [16] P. PORTA, F. S. STONE, R. G. TURNER, J. Solid State Chem., 11, 135 (1974).
- [17] C. OTERO AREAN, J. S. DIEZ VIÑUELA, J. M. RUBIO GON-ZALEZ, A. MATA ARJONA, Mater. Chem., 6, 165 (1981).

- [18] F. PEPE, P. PORTA, M. SCHIAVELLO, Proc. 8th Intern. Symp. Reactivity of Solids, Götteborg (1976). Ed. J. Wood, O. Lindqvist, C. Helgesson, N. G. Vannerberg, Plenum Press, N. Y. (1977).
- [19] W. RUDDORFF, B. REUTER, Anorg. Chem., 253, 194 (1947).
- [20] R. K. DATTA, R. ROY, J. Amer. Ceram. Soc., 51, 297 (1968).
- [21] M. HUBER, J. Chem. Phys., 57, 202 (1960).
- [22] S. GREENWALD, S. J. PICKART, F. H. GRANNIS, J. Chem. Phys., 22, 1597 (1954).
- [23] V. E. PLYUSCHEV, M. KH. ANNAGIER, S. A. PANAKH-ZADE, Azerb. Khim. Zh., 6, 54 (1975).
- [24] F. S. STONE, J. S. DIEZ VIÑUELA, C. OTERO AREAN, to be published.
- [25] H. P. Klug, L. Alexander, X-ray Diffraction Procedures, John Wiley, N. Y. (1974).
- [26] R. D. SHANNON, C. T. PREWITT, Acta Cryst., B25, 925 (1969); B26, 1046 (1970).
- [27] C. OTERO AREAN, Thesis, Universidad Complutense, Madrid (Spain) (1978).
- [28] J. M. Rubio Gonzalez, Thesis, Universidad de Oviedo (Spain) (1981).
- [29] H. FURUHASHI, M. INAGAKI, S. NAKA, J. Inorg. Nucl. Chem., 35, 3009 (1973).

- [30] International Tables for X-ray Crystallography, Ed. H. F. M. Henry and K. Lonsdale, Kynoch Press, Birmingham (1965).
- [31] M. E. GARCIA DIAZ, Thesis, Universidad de Oviedo (Spain) (1981).
- [32] ASTM Powder Diffraction File, Card n.º 10-114.

Short title:

CRYSTALLOGRAPHIC STUDY OF $Cd_xNi_{1-x}Ca_2O_4$ SPINELS

Key words:

Nickel gallate: cation distribution Cadmium gallate: cation distribution Cadmium-nickel-gallium spinels: cation distribution