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ALTERNATIVE
EQUILIBRIUM
CONFIGURATIONS OF
THE INTERFACE
BETWEEN TWO FLUIDS
IN CONTACT
WITH SOLIDS

A cylindrically symmetric system comprising two immiscible

fluids placed between two identical parallel plates is analysed for

the possible equilibrium configurations of the fluid interface.

The configurations include bridges, attached «drops» and iso-

lated «drops» and multiply connected combinations of these.

After determining the geometrical properties and the Helmholtz

energy of each configuration, the stability of the various confi-

gurations is discussed and the transitions between them, as the

stability limits are overshoot, are predicted.

1 — INTRODUCTION

The equilibrium shape of the interface between two
immiscible fluids acted by externally applied fields
is the solution of Young-Laplace differential equa-
tion [1,2] that satisfies the specific conditions of
each particular problem. Usually these conditions
are the given volume of the fluid enclosed by the
interface and boundary conditions for the inter-
face. Two types of boundary conditions can be dis-
tinguished: i) geometrical and ii) contact angle con-
ditions. Examples of the first type are the boundary
conditions at the apex and at the line of contact of a
drop hanging from a tube of given radius. Contact
angle conditions appear, for example, in liquid
bridges between two spheres or two indefinite plates
and in drops hanging from a ceiling. These latter
conditions are in fact necessary for equilibrium [2]
but are generally introduced as boundary conditions
for the interface.

Particularly when solid bodies of a given geometry
are present, there may be alternative equilibrium
configurations for the fluid interface, each with
specific boundary conditions. It is also possible
(e.g., in pendent drops [3]) that more than one
equilibrium configuration is compatible with the
imposed conditions (volume and boundary condi-
tions). As the geometrical parameters of the system
(that is, the position of the solid bodies or the
volume of fluid, if this regarded as a variable
parameter) are allowed to change, it generally
happens that a particular set of boundary condi-
tions can only be fulfilled for values of the para-
meters within a certain interval.

Problems on equilibrium shapes of interfaces are
usually discussed for a particular type of boundary
conditions, without allowance for alternative condi-
tions (e.g., [3-7]). But an actual two fluid system
comprising solids of a given geometry may fre-
quently admit multiple equilibrium configurations,
each with specific boundary conditions. This possi-
bility may change the stability limits of a particular
type of configuration [8]. In addition, no attention
is generally given to the change in configuration
that necessarily occurs when the geometrical para-
meters overshoot the permissible interval for a par-
ticular set of boundary conditions. This is essen-
tially a dynamical problem but, as will be shown,
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predictions on the final configuration can be made
based on equilibrium properties.
This paper contains a detailed study of the alter-
native configurations of the interface between two
fluids bounded by two identical plates symmetri-
cally placed. To make the calculations easiest, a
cylindrically symmetric geometry is assumed, in the
absence of applied fields. The cross-section of the
fluid interface is then circular, provided the fluid
interfacial tension, y, is independent of position in
the interface [2]. The contact angle, Oc, of fluid 1
with the plates (in presence of fluid 2) will be taken
as a characteristic of the system, and is given by
Young's equation [1,2]

COSO,
	 Y2 — YI	

( I )

where y,, y2 are the solid-fluid interfacial tensions. It
will be assumed that the ratio in the second term of
equation (1) is in the interval [-1,1], so that echas a
well defined value.
The system to be studied is not easy to reproduce
experimentally, but the approach developed can
also be applied to more common situations, particu-
larly to axially symmetric interfaces in a gravitatio-
nal field [9], and to predict the distribution of liquid
in wetted powders such as those used in liquid phase
sintering [10].

2 — ALTERNATIVE EQUILIBRIUM
CONFIGURATIONS

The fluid enclosed by the interface and plates will be
denoted by fluid 1. The other fluid, 2, is the
surrounding fluid. Only configurations with fluid 2
as the surrounding fluid will be considered. The
volumes of both fluids are fixed. If allowance is
made for the fragmentation of fluid 1 in several
non-connected volumes, a large variety of configu-
rations will be possible. We shall consider at this
stage the «elementary» configurations, which can
be classified into three groups: bridges, attached
drops and isolated drops or i-drops. Examples are
given in fig. 1. In the first two cases, the interface
may contact the plates either at their edge or within
the plates. These two configurations will be termed
r- and Q- configurations, respectively. Therefore,
the elementary configurations are: r-brides, ec-brid-

2x

2d

2h 'i(1)

(e)	 (f)

Fig. I

Different types of equilibrium configurations with cylindrical

symmetry: a) r-bridge; b)	 -bridge; c) two equal attached

r-drops; d) one attached ecdrop; e) one isolated or i-drop;
f) triply connected configuration with two 0c-drops and an

i-drop symmetrically placed

ges, r-drops, 6-drops and i-drops. We shall discuss
in greater detail bridge configurations and triply
connected configurations comprising two attached
drops and an i-drop placed as shown in fig. if.  Mul-
tiply connected 8-bridges and more complex con-
figurations will not be treated explicity.

3 — GEOMETRICAL PARAMETERS,
HELMHOLTZ ENERGY AND FORCE
OF ADHESION

Let 2V be the volume of fluid 1 per unit length of
the system, 0, its contact angle with the plates, 2r
and 2d, respectively, the plate width and separation.
We calculate, for each of the configurations refer-
red to above, the width 2x of the interface at the
plates (in ecconfigurations), the total heigth 2h
perpendicular to the plates (for drops) and the
Helmholtz energy 2A per unit length of the system.
This is the sum of the energies of the fluid interface
and solid interfaces [11]. Since V, r, and the y's are
fixed, it is sufficient, for comparative purposes, to
compute the quantity (cf. eq. (1)

A* –  A 	 Y2 r  _  L	 x  cose (2)
2yV1/2	 Y V'	 2V1/2 V'

where 2L is the total length of the fluid interface pro-
file. For a given system A* increases linearly with A.
In the following equations O designates the angle
between the interface and the plates measured at the
line of contact. Clearly O = 0, in 6-configurations
(e.g. figs. lb , d), and x = r in r-configurations (fig.
la , c).

2r

(a)

2h

(d)
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BRIDGES
20 

4(8)= sine AO) (9c)

The main equations are (2x0 is the neck width,
fig. lb)

Fig. 2 shows plots of x/V as function of d/V'
in bridges, for various values of 0. Also shown
(dotted lines) are curves of x/V ' as a function of
h/V' for one and two equal attached drops and

(3) the value of h/V' of an i-drop. Fig. 3 shows the
limits of geometrical possibility of bridges and
drops, as a function of 0. The limiting curves for

(4) bridges correspond to x,=0 when 0 < 7r/2 and to
x = 0 when 0> 7r/ 2. Bridges with a given O are pos-
sible for values of d/V1/2 smaller than the one given

(5)

DROP CONFIGURATIONS	 4

0,,02 are the angles of the attached drops with each
plate and 2x1, 2x2 are their widths at the plates (fig.
If); f„ f2, f3 are the volume fractions of fluid 1 in
the two attached drops and in the i-drop, respecti-
vely. In particular f3= 1 indicates an i-drop and
f, = f2= 1/2 two equal attached drops. The total
height 2h= h, + h2 + h„ see fig. If. The main equa-
tions are:

h 	1 
WV 1/2	 v-2	 'PT, (0I) + ff-2 4)(02) + 2\/f,/ni 	 (7)

o

XI

V1/2	 \f-27.1 A(61)
x2
	  —	 A(02)	 (6)V1/2

Fig. 2

(8)

(9a)

(9b)

A	 1  a_
—* 2/2 I v +(el) + V(724(02) + 2V'-

-2 cosen[J, X(01)+ Vf2X(02)l

with

	— ctgO)
sin20

1-cos0 T(0)=	 40)
sin&
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Full lines give the bridge width, 2x, at the plates as a function of

plate separation, 2d, for various values of O. Dotted lines give

the width of one (I) and two (2) attached drops and of one

i-drop (i) as a function of the total height 2h of the drops. The

line AFB marks the limit of possible bridge configurations.

CDEF indicates the path of a bridge for r/ V1/2 =0.78 and

and e c= 45 0 . An arrow means that a curve continues

by the curves. The limiting curves for drops corres-
pond to h = d. Each drop configuration (one or two
equal drops or one i-drop) is possible for values of
d/V1/2 larger than those given by the curves of
fig. 3. All the necessary information on the geome-
trical parameters of the various configurations can
be obtained from figs. 2 and 3.
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as a force on the plates. Fig. 4 shows examples of
the variation of F with plate separation in r- and Q-
-bridges.

-5

12e

9 0*

60*-

o

2
	

(dA,

Fig. 3

Limiting values of d/ V½ as a function of 0 for bridges (B), one

attached drop (1) and two identical attached drops (2). Also

marked is the limiting d/V1/2 for one i-drop (i). Bridges and

drops are possible for values of cl/ V1/2 smaller and larger, res-

pectively, than those in the limiting curves

The force of adhesion, F, due to a bridge can be
determined from the rate of change of the
Helmholtz energy with plate separation

	

Fód = dA
	

(10)

As will be shown in more detail elsewhere [12] this
gives for the force the following expression

Or
	 —= —cose + sine

2y d
F x

= -V—cos0 + sine + n/2-6
d2	 cose
	 (12)

Equation (11) contains the usual two terms [13,14]
due respectively to the pressure difference across the
interface and to the fluid interfacial tension acting

Fig. 4

The force of adhesion in Os-and r-bridges, as a function of plate
separation, for various values of ( e and r/1. The curves for

e e= 45° and r/ V½ —0.78 intersect at two points. The curve for

r/V1/2 =0.6 is not shown complete

4 — STABILITY

Each type of configuration has a range of geome-
trical possibility which can be determined from the
equations of the previous section. It is now neces-
sary to find out whether each configuration is stable
or unstable. As will be shown, some r-configura-
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tions are unstable relative to 0-configurations.

We discuss first the stability of bridge configura-
tions. For given r/V1/2 and 0, there may be, as fig. 2

shows, intervals of d/V1/2 where r- and 0,-bridges

are both possible. In these intervals it is x <r for
0,-bridges and O <0, for r-bridges. For example,
for r/V1/2 = 0.78 and Oc = 45° both bridges are pos-
sible in the interval of d/V1/2 between D and E in
fig. 2. Outside this interval only the r- configuration

is geometrically possible.
In the intervals of d/V1/2 where the two bridge con-
figurations are geometrically possible, calculation
of A* shows that the Oc-bridge always has a smaller

Helmholtz energy than the r-bridge. This can also
be seen in the examples of fig. 4. The force F is
always larger for the r-bridge in the interval of
coexistence: equation (10) then shows that its energy
is larger. Consider now a r-bridge for a value of

d/V1/2 just above the smallest value for which the
two configurations occur. If the r- bridge is slightly
perturbed so as to produce a 0,-bridge, the

Helmholtz energy decreases. The r- bridge is there-

fore unstable.
If d/V1/2 is increased from a value small enough for

the bridge to be of the r-type, three possibilities can
be distinguished: a) the bridge remains in the r- con-

figuration until it breaks; b) the bridge changes to a
bridge at a critical separation and remains in this

configuration until it breaks; c) the bridge changes
to a 0c-bridge and then again to the r- configuration.
For example, for 0, = 30° the three cases occur res-
pectively for r/V1/2 <0.92, for r/V1/2 in the interval
0.92 -1.00 and for r/V1/2 > 1.00. For Oc> 90° it is

always case b) that occurs.
Similar conclusions can be drawn as regards the
stability of attached drops. When both r- and 0c-
-drop configurations are possible, it is always the
r-configuration that has larger A* and is therefore
unstable. All other drop configurations are likely to
be stable. In conclusion, all geometrically possible
configurations (including those with any number of
0c-bridges, Occirops and i-drops) are stable, except
the r-configurations when an alternative 0,-configu-
ration of the same type can occur.
We end this section with a brief discussion of the
configurations that may be expected when

(y2—y,)/y is not the interval [-1,1]. In such cases
no 0c-configurations are possible, but r-configura-
tions can occur. For 4 > 1, a geometrically possible
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r-configuration will always be stable. In the case of
r-bridges, as the value 0 = 0 is reached and d is
further increased, it is expected that a special type
of 0-bridge will take its place. This bridge ends
within the plates with 0 = 0 but is prolonged to the
edge of the plates by a thin layer of fluid. For this
configuration there is no solid-fluid 2 interface. It is
easily shown that in this case the force of adhesion
has the same value as for a true 0c-bridge with Oc =0.
For < — 1, r-drops are likely to be unstable. Stable
configurations that may occur in this case are
r-drops and r-bridges with 0> 180°. For separations
larger than the one corresponding to 0 = 180°, a
special type of 0c-bridge, analogous to the one des-
cribed above but without solid-fluid 1 interface,
may be a stable configuration.

5 — TRANSITIONS BETWEEN EQUILIBRIUM
CONFIGURATIONS

When the limit of existence of any of the stable con-
figurations is reached and the plate separation is
slightly changed to a value outside the range of
stability, the system will irreversibly change to
another equilibrium configuration. Note that the
variable parameter is d/V1/2 so that the discussion
also applies to transitions due to volume variations.
Kinetic energy is produced in the transition, and the
problem is essentially a dynamical one. If the transi-
tion is at constant temperature (in addition to cons-
tant volume) and if a negligeable amount of
mechanical work is put on the system to cause the
transition, the final configuration must have a
smaller A* thant the original one.
In fig. 5 are compared the Helmholtz energies, A*,
of the following configurations: r- and 0,-bridges,

one and two equal attached drops and one i-drop.
Only the stable bridge configurations are represented
in fig. 5, but both r and 0-attached drops are consi-
dered, although r-drops are unstable relative to
Oc-drops. Other configurations have also been
studied and their A* values calculated, but they are
not indicated in fig. 5. The following conclusions
can be drawn from these results.

i) Simply connected configurations of a given type
(i.e., bridges, attached drops and i-drops) always
have a smaller A* than multiply connected configu-
rations of the same type.
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Fig. 5

Helmoltz energy, A*, as a function of plate separation, d/V1/2,

for various configurations and different values of contact angle,

Or, and plate width, r/ V'/2. The curVes give A* for bridges. The

dot indicates the transition between r-and Or-bridge configura-

tions. In (d) only the r-bridge occurs. The other configurations

included are: one r-drop ( ), two equal r-drops (—); one Oc

-drop (---); two equal Ocdrops(---); one i-drop (—.—.).

Some of these configurations cannot occur in specific cases

ii) Considering only simply connected configura-
tions (i.e., one bridge, one attached drop, one
i-drop) and values of d/V1/4 for which two or three
of such configurations are possible, the A* for one
attached drop is always smaller than that for an
i-drop; the A* for the bridge may be larger or
smaller than the A* for any of the two other confi-
gurations.

52
	

Rev. Port. Quint., 23, 47(1981)



INTERFACE BETWEEN TWO FLUIDS IN CONTACT WITH SOLIDS

iii) The A* for two equal attached drops is larger
than the A* for one i-drop when O> 900 and vice-
-versa.

When the limiting d/V1/2 for a stable configuration
of the types considered in fig. 5 is slightly over-
shoot, the new configuration cannot be predicted
from the values of A* exclusively, since there are in
general various alternative possibilities. However,
some final configurations can be rulled out. For
example, a (9,-bridge with 0,5 130° cannot give two
attached drops (cf. fig. 4g).
The final configurations may even depend on the
way d/V1/2 is changed from its limiting value. If the
two plates are moved in the same way, it is expected
that a symmetric configuration will give rise to
another symmetric configuration. However, if only
one plate is displaced, for example, the final confi-
guration may not be the same. A (9,-bridge with
O,> 90° illustrates this point. Depending on the way
d is increased behyond the limiting value, either an
i-drop or one attached drop may result.

Expected transitions for a symmetrical displace-
ment of the plates are schematically shown in fig. 6.
The following are the main conclusions.

INITIAL

Or

Or

Or E

Fig. 6

Examples of irreversible transitions at the limit of stability of

various initial configurations. The plates are moved in the same

way, indicated by the arrows, to produce the transitions. The

dotted lines indicate that either r- or 9-configurations may be

considered
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i) For bridges with 0, <90°, two equal attached
drops will result (either r- or 9,-drops); if e> 90°,
an i-drop will result.

ii) For one or two attached drops, or for an
i-drop (or other conbinations such as in fig. 6), a
bridge (r or Oc) is expected to form.
Finally, when two volumes in a multiply connected
configuration come in contact as a result of a
displacement of the volumes, not necessarily asso-
ciated with a displacement of the plates, they
coalesce to produce a simply connected volume.
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RESUMO

Configurações alternativas da interface entre dois fluidos em

contacto com sólidos.

Faz-se um estudo comparativo das diversas configurações de

equilíbrio (com simetria axial) que pode assumir a interface entre

dois fluidos imiscíveis, colocados entre duas placas paralelas e

idênticas. As configurações possíveis são: pontes líquidas, «go-

tas» cativas e «gotas» isoladas e combinações não-conexas

destas. Com base em cálculos das propriedades geométricas e da

energia de Helmholtz, discute-se a estabilidade de cada confi-
guração e prevê-se as transições que ocorrem quando o limite de

estabilidade de uma delas é ultrapassado.
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