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CONCENTRATION
OF DILUTE MIXTURES
IN ROTARY THERMAL
DIFFUSION COLUMNS:
THE THEORY

A phenomenological theory for the concentration of dilute

solutions by a rotary thermal diffusion column is presented,

based on the development of a simplified (2-dimensional)

model for the rotary column and subsequent application of

Ramser's derivation for the «moving-walls» column. The

application of the idealised theory to practical apparatus is

discussed and an «equivalent annulus width» for the rotary

column defined in identical basis as for the static column.

The separation equations thus obtained indicate that the per-

formance of the rotary column is strongly dependent on the

constancy (perfection) of the annulus width. For perfect

apparatus the separation is independent of the speed of rotation

and is greater than static separation. For imperfect columns,

however, the separation decreases as the speed of rotation

increases, and, ultimately, the rotary performance gets poorer

than the conventional static apparatus. The limited experimental

results available are discussed in terms of the present theory.

1 — INTRODUCTION

The separation of liquid mixtures by thermal
diffusion has been the focus of several work since
in 1938 CLUSIUS and DICKELL [1] presented the
so-called thermogravitational column. The investi-
gation has been mainly concerned with the establish-
ment of a phenomenological theory for the column
separation and with the improvement in the column
performance (through some modifications in the
basic design of the apparatus), both aims running
almost concurrently.
Phenomenological theories have been proposed by
several authors but the most successful and original
are those of FURRY et al. [2] and DEBYE [3] which
arrive at the same basic «transport equation»
although the derivations and range of application
are different. Modified theories have been sucessfully
applied to modified column-designs with the
exception of the rotary column, a prototype
apparatus that, due to its promising characteristics
has recently attracted the interest of investigators
in thermal diffusion.
The reason why no adequate theory for the rotary
column exists lies in the fact that the hydrodynamic
pattern inside the annulus of such apparatus is
unique; while the other types of columns have
only one direction of convection (either natural or
forced), in a rotary column the natural convection
(axial flow) is normal to the forced convection
(tangential flow). As a result, the particles stream-
lines are three-dimensional rather than two-dimen-
sional, the shape of these streamlines being similar
to a helically wrapped coil around the column
(the angle of inclination, radius of the xy-position
and distance between consecutive vertical points
being dependent on the x-coordinate, i. e. the
flow is not even symmetrical with respect to x (fig. 1).

2 — THE REDUCTION OF THE PROBLEM
TO TWO-DIMENSIONS

The non-linear partial differential equation that
arises from the application of the continuity equation
in the absence of chemical reaction [4] to the
3-dimensional flow pattern in a rotary column is
of such complexity that the analytical integration
«qua tal» is virtually excluded. The difficulty has
already been pointed out by ROMERO [5] who
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suggested the reduction of the problem dimensions
and a subsequent application of the mathematical
derivation of the 2-dimensional conventional column.
In doing so, the separation equations would be
formally identical in both rotary and static columns
and the design methods devised for the static
apparatus could be «translated» to the rotary
column.

Fig. l
Particle streamline in the «hot region» of a rotary thermal

diffusion column with the inner cylinder rotating

In his pioneering work, in attempting to correlate
his own experimental data, ROMERO [5] derived
what he called «an elementary theory» which, in
fact, involves a reduction of the problem dimensions.
The basic assumption introduced was that the
rotary column was physically equivalent to a
parallel plate column whose walls move in opposite
directions with equal absolute velocities and having
the same rate of shear across the annulus as the
rotary column. In other words, if the inner cylinder
rotates with a tangential velocity V, the equivalent
«moving walls» column would have wall velocities
of + V/2 and -- V/2. Afterwards, Romero follows
a derivation pattern similar to that of FURRY,
JONES and ONSAGER [2] for the static column,
obtaining a «transport equation» formally identical
to the static case but with different transport
coefficients. Somewhat surprisingly, though, that
author used for the length of the «moving-walls»
column the vertical height of the column which
is in apparent contradiction with the physical
analysis outlined by ROMERO [5] in which it is
stated that the length of the particles streamlines

(the effective length for cascading) is increased by
rotation without, however, changing the residence-
time of the particles. As a consequence, the theore-
tical predictions regarding the steady-state separa-
tion are far below the experimental results reported
by Romero, but, on the contrary, the theory is
in qualitative agreement with the experiment in
what concerns the phenomenological parameters
that do not depend on the column length.
It may therefore be concluded that the approach
of Romero to reduce the problem dimensions, i.e.,
the physical analysis that led to the assimilation
of the rotary column to a moving-walls column is
a suitable basis upon which the present theory is
to be derived.
Like the conventional theories, the range of validity
of the theory presented here is limited by the
simplifying assumptions introduced throughout the
derivation. Hence, besides the usual limitations [8]
it is necessary to consider those involved in the
analogy with the «moving-walls» column (related
to the speed of rotation) and the range of con-
centrations under examination (dilute mixtures).

3 — THE VELOCITY PROFILE

For the system of fig. 2, the Navier-Stokes equations
for the viscous flow of an incompressible newtonian
fluid at steady-state hydrodynamic conditions, at
speed below the critical Taylor Number, (N Ta)c ,
are [4]

a
pv z = O

ap _ 0

ax

a2v
Y =-

ax2

(4)

with the following boundary conditions valid for
a reservoirless column operated batchwise

vy =V,	 vZ = 0 at x = 	 (5)

az (1)

(2)

(3)

â2vZ = 
ap + pg

ax 2 	az
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vy =O,	 vz =O at x = —

+ w

J vzdx = O

_ w

The integration of equations (3) and (4) subjected
to the above boundary conditions yields

= 
V x	 `

vy 	2
 C W

 +1 1

For speeds of notation above a certain value [7]
— the lower limit of velocity — the extreme values
referred to in equations (12) and (13) are sufficiently
close for the following assumption to be acceptable:

1 	Rg(oT)wz

18	 riV
(14)

In this case, also

(6)

(7)

tan	 (tan y)) av _ —

(8) -n

VR vy

vZ =
 Ng(A ^

)W2 ^ W	 C1 — ^ cox  )^ J^

(9)

where it was assumed that aT/ax = AT/2co which
is generally valid [7].

The resultant velocity, v R(x), has, thus, a magni-
tude of

VR
 = ✓ vyz + vZ s

(15)

It is convenient, for simplicity, to express the
velocity profile of equation (8) in the symmetrical
form

V x
vy = — —

2	 co
(16)

(10) i.e., to assume that both walls are moving in
opposite directions with velocities + V/2 and

from the horizontal, c)(x), — V/2 [5]. The substitution of equation (8) by
equation (16) does not interfere with the validity
of the model since what is important in terms of

yz 	the remixing-cascading effects within the annulus
	tan 4 =  	 are the relative velocities of the particles and notvy

(11) the absolute velocity of the fluid (providing the
flow remains below the critical Taylor Number

that the angle	 is at a	 and above the lower limit of velocity).

the lowest value If now a new coordinate system, xy'z , is intro-
is at x = — co duced, obtained from the xyz-system of fig. 2 by

rotating it around the x-axis by an angle Y av given
by equation (14), the velocity profile v R (x) in the

	1 	 [3g(OT)ca2	
new system is simply defined by

	co	 24 	^ V
x =  

2
(12)

(17)  

1 	pg(OT)w z

3	r1V 
tan 4)

X = — W and the inclination from the xy' plan is zero.
(13) The length of contact between the upwards and   

and its deflection angle
is defined through

It may be easily seen
maximum at x = + co/2 and that
of 4 in the interval [H- co, — co]
respectively:

tan q
V x

vR = Yy' _
2	 co
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or, using equation (14),

L	 18)1V

I (tan (P)av	 Pg(OT)WZ

Be _ L* ac

az	 L	 ay'
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ac	 ac
az — az'

(18)

VERTI CAL PRACEss
F'FOW2cv.iTAL -P20CESs

Fig. 2

Model of the rotary thermal diffusion column

downwards streams (the length of a particle stream- 	 Since the angle Y av is assumed to be small,
line) for a column of vertical height L is, thus,
on average

L* = 	
L	

(23)
I (tan (.)av

and, noting that the flow pattern is such that

(19)
it is possible taking equations (23) and (24) together
to write

4 — THE MASS FLUXES

In the new coordinate system, xy'z', the mass
fluxes existing inside the rotary column, are (v. =
= vZ = p)

and, also

ac _ L* ac
az'	 L	 ay'

(25)

ac	 apD aT
J X =— pD  	 c(1 — c)

ax	 Ta,.	 ax
(20)

ap _ L* ap

az'	 L	 ay'
(26)

Jy' = — pD a c + vy'cp
Y (21)

The flux JZ, becomes, then

L*
Be

Jzi
	 — pD L	 ay'

Jz i = — pD 	 Y
az	 (22)	 (27)
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is, therefore

aJZ , _ a	[pp ( L*

ILaz'	 ay' p 	L )2

a(cp) _ 	aJz,
40 S2 	qh 	°°

C = co ^ 
1+   ^ (- 1)n

120 + ,i22 	7c2 (2(0) n =   

sin [(2n + 1) h  ac a(cp) 

ay'
(31) 

[1—e— (2"+I)2t/Ø]ay '   
(2n + 2)       

ROTARY THERMAL DIFFUSION COLUMNS

and the corresponding term in the continuity 	 upon which the phenomenological theories for
equation [4],	 thermal diffusion columns are based, fully discussed

by ROMERO [8], the treatment of RAMSER [6] for
a(cp)—	 div J	 the «moving-walls» column has the following extra-

at	 (28)	 limitations:

1) c(1 — c)	 c	 (i.e. dilute solutions)

ac
	 (32)

ay' J 	2) Tav 	a (OT) (i.e. moderate temperature
(29)	 gradients)	 (33)

The overall equation is thus

a(cp) 	 ah, +

)2 + pDJ

a(cp)

at	 ax'

(
+ ay ' {rpD L

or, since L*/L . 1.

— v,.
ay' ay'

(30)

3) V	
11 D (i.e. forced convection	 natural

2w	 convection)

(34)

Under the above conditions the mathematical
treatment of Ramser arrives at the following
solution for the concentration profile in the direction
of shear, which converges for large values of the
time variable, t:

at	 ax'
+

*a  r D¡ L 
+ 

 ay'
Lp 1 L

Equation (31) is formally identical to that of the
more conventional columns for which the treatment 	 where
of DEBYE [3] or of FURRY et al. [2] apply.

S2
_ (2w) V 

D

(35)

(36)

5 — BATCH SEPARATION EQUATIONS

The reduction of the problem to two dimensions	 (37)
presented in the preceding sections is equivalent
to «substituting» the rotary column by a «moving- 	 h2	 1
walls» column whose walls move in opposite 	 O	

n2D 1 ♦ S22/96
directions with velocities + V/2 and — V/2 and 	 (38)
whose length of contact between upwards and
downwards streams, L*, is given by equation (19). 	 _ y — h
In this case it is possible to use the results of	 2w
RAMSER [6] for thermal diffusion under linear fluid	 (39)
shear.
Besides the usual simplifying assumptions associated 	 h = length of a particle streamline
with the derivation of the «fundamental equation» 	 (40)

a (OT)
q =

Tav
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The degree of separation, A, defined as the difference	 rotary column defined by equations (46) and (47)
between the top and bottom concentrations, re- 	 may be expressed in terms of the corresponding
spectively, cT and cB , involves the difference between	 static parameters, (A.) st and (tr)st , as
the two infinite series obtained from equation (35)
by substituting	 by	 Aco = 1.43(A co )st

h	 (48)

263
and zero, respectively. However, after a time
t > 0.3 t r the terms of the series beyond the first
can be neglected with an error less than 1 % and,
after rearranging the following expression is obtained where

t r = 1.37(tr)s t
(49)

A= A. (1—k3e t/Ir)
(A oc )st = Xco

(50)
(41) 

(tr)st =

9!D7) 2L2

with 7t2 [3 2g2(AT)2(26.)6

(51)l OcoxD(AT)h
—

(42)
The identical functional dependence of the separation
of the rotary and static columns emphasised by
equations (48) and (49) is somewhat surprising

96Dh2	 since it is believed, according to experimentaltr = 	 R2(2w)2`t2	 reports, that separation and relaxation-time are
(43) affected by rotation. Another interesting observation

is that equation (48) predicts that rotation increases

k3 = 
8 	the steady-state separation attainable, which has

Tt2 	not been always observed in the non-dilute con-
(44) centration range [5].

It is anticipated that the above conclusions, based

	

Introducing the dimensionless length, A, defined by 	 on a model derived for an «ideal» situation which
may be widely different from the «real» conditions

504«D1L	 encountered in practice [12], are strongly affected

[3gTav(204	 by non-ideal conditions.
(45)

Tav(2(0 )2V

and substituting h which in this case is equivalent
to L* by its value given in equation (19) the
following equations are obtained

6 — APPLICATION OF THE «IDEAL» THEORY
TO «REAL» COLUMNS

A o = 1.43Aco	 The principal factor affecting the agreement between

(46) predicted and experimental results in the conven-
tional static columns has been the non-constancy
of the annulus width, due mainly to the eccentricity

D• 1 2L2
t r = 3.44 • 105  	(either local or along the entire column length).

Tczr.1zgz(AT)2(W)6 	 The problem has been the focus of study of several
(47) workers [9-11] and, ultimately, BOTT and ROMERO [12]

introduced the concept of «equivalent annulus

	

It is interesting to note that the steady-state 	 width» based on the physical interpretation of the

	

separation, A., and the relaxation time, t r , of the	 role played by the eccentricity in altering the fluxes
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within the column. Briefly, it can be said that the
eccentricity of the annulus of a static column
promotes and extra-remixing that decreases the
separation as if the column had a larger annulus
width. The concept was used recently [14] to correlate
the experimental results obtained in a commercial
column and proved to account for the irregularities
in the annular space over the entire separation
range.
The effect of eccentricity when the column rotates
is qualitatively the same — increase in remixing —
but the «equivalent annulus width» must, in prin-
ciple, be different from the static one since the
flow pattern is also different. In fact, in a static
column, the particles streamlines are practically
parallel to the column walls, whereas for a rotary
column (at speeds above the «lower limit») the
angle between the particles streamlines and the
vertical direction is almost 90 degrees. As a result,
the existence of an eccentricity will induce a some-
what «pulsating» remixing effect similar to that of
the static column but repeated (L*/L) times. Thus,
the equivalent annulus width for a rotary column
will be different from that of the static column
and, in principle, greater. Also, it is expectable
that the speed of rotation will affect strongly the
value of the equivalent annulus width of the rotary
apparatus since the angle between the particles
streamlines and the walls depends on the speed
of rotation (and, thus, depends the «pulsating»
effect).
If, then (2w) in the previous equations is considered
the static equivalent annulus width as defined by
BOTT and ROMERO [12], the «rotary equivalent
annulus width», (2w*), must be

2w*= 2w
Y

(52)

with y < 1
(53)

Taking equation (52) into account, the «real»
expressions for the steady-state separation, A co , and
relaxation-time, t r, to use in equation (41) become

A. = 1 .43 y4aco

or

= 1.43y 4 • (A.)st

(55)

and

p.)1 2 L2

t, _ 3.44 10 5 y 6

(56)

o r

t r = 1.37y6 • (tr)st
(57)

With equations (55) and (57) it is now seen that
the improvement or decrease in separation relatively
to the static column will depend essentially on the
actual value of y, that is, on the constancy of
the annulus width and speed of rotation.
A means of testing the validity of the theory and
the adequacy of the parameter y just introduced
is to determine the steady-state separation and
relaxation-time experimentally and compare the
values of y evaluated through equations (55) and
(57) that carry distinct functional dependences on y.

7 — PUBLISHED EXPERIMENTAL WORK
AND THE THEORY

Although the concentration of dilute solutions by
conventional thermal diffusion has been often
referred in the literature, the use of a rotary column
in this range of concentration has only been reported
by BOTT [13] who worked with a dilute aqueous
solution of glycerol (5 % mole per. glycerol).
Bott studied the influence of the speed of rotation
on separation but restricted it to the first phase
of the transient period of separation where aA/3t is
larger (this phase has the greater potential interest
for large-scale application). The results of BOTT [13]
are, therefore, of limited value to a complete test
of the theory. Notwithstanding, the experimental
separation curves obtained, shown in fig. 3, allow
some inferences:

7L2(32g2(AT)2(2 co) 6

(54)	 (1) The separation is increased by rotation which,
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Time, hrs

Fig. 3
Separation as a function of time for 5 % glycerol-water

system [12]

in terms of the theory means that y is close to
unity or, at least, (1.43 y4) > 1.

(2) The separation curves for the two speeds of
rotation, 24 and 38 RPM, are not significantly
deviated which again is an indication that the
column is not much imperfect, i.e. that y is close
to unity.

As far as the equilibrium-separations and relaxation-
times involved are concerned, it is necessary to
extrapolate the results of fig. 3 to greater times.
This extrapolation may involve a large error and
is therefore severely limited in terms of confirming
or rejecting the theory. Nevertheless it is worth-
while to estimate, though roughly, the orders of
magnitude of the extrapolated and calculated
parameters since it provides an example of the
type of determinations involved.
By a least squares method it is possible to define
the parameters !1 0. and t r that give the best fit
between equation (41) and the experimental points:

(6, 03)st = 0.028

(00)24 ti (Om)38 ^ 0.033

(tr)st ' 60 hrs

(tr)24 —̂ (038 ^— 55 hrs

The value of y may now be evaluated through
either equation (55) or (57) and if the theory is
correct those values — referred to as Y and y e —
should be equal

0.033	 '

TA 	(1.43)(0.028)
	 4 — 0.95

55 I
It -- 	  6 = 0.94

(t.37)(60) ^

_

If the extrapolated values of 0 and t r are assumed
to be valid, the above results indicate that the
column is almost perfect (Y — 1) and the test of
the theory, positive (y ye).

8 — CONCLUSIONS

By comparing the rotary column to a «moving-
walls» column with an equal rate of shear across
the annulus and defining an «effective length of
cascading», it is possible to use the general derivation
pattern of the «moving-walls» theory to study the
rotary column. The principal results thus obtained
may be summarised as follows:

1) Apart numerical factors the separation equations
of a rotary column for the concentration of dilute
mixtures (c (1 — c) ^ c) are identical to the corre-
sponding static equations when the column is

geometrically perfect.

2) For a rotary column not geometrically perfect
it is necessary to define an equivalent annulus
width by 20 = 2o/- , in which (2(o) is the static
equivalent annulus width as defined by BOTT and
ROMERO [12] and y is a correction factor less than
unity that may be evaluated experimentally.

3) The separation and relaxation-time are more
favourable in the rotary column (better perform-
ance), providing that the value of y is close to
unity, i.e. that the column is near perfect.
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LIST OF SYMBOLS

c	 — molar fraction of specified component
co 	— initial feed composition
cT	 — composition at the top of the column
cB	 — composition at the bottom of the column
D — mutual diffusion coefficient
D"	 — thermal diffusion coefficient
g	 — gravity acceleration
h	 — length of column (for cascading)

J	 — molar flux
k3	 — dimensionless parameter defined by eq. (44)
k	 — thermal conductivity
L — column length (height)
NTa — Taylor number, NTa = 2p 2(26)) 3V2/rm o/ 2

(NTa)c — critical Taylor number = 3.39 x 10 3

p	 — hydrostatic pressure
q — dimensionless parameter defined by eq. (37)
✓ — cylinder radius
T	 — absolute temperature

— time
t r 	— relaxation-time
✓ — tangential velocity (velocity of the moving wall)

✓ — velocity
vR	 — resultant velocity of the combined natural and

forced convection
x, x", y, y', z, z" — coordinate directions
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a — thermal diffusion constant
p — temperature coefficient of density
y — correction factor defined by eq. (52)
A — degree of separation (A = I CT — CB I)

AT — temperature difference between hot and
— dimensionless vertical coordinate defined

cold walls
by eq. (39)

RESUMO

av
st
co

a — dimensionless length defined by eq. (45)
— viscosity coefficient

O — dimensionless time defined by eq. (38)
n — 3.141592...
p — density of the mixture

- deflection angle of the particles streamlines from
horizontal

S2 — dimensionless parameter defined by eq. (36)
2co — annulus width (equivalent annulus width) of static

column
2w* — equivalent annulus width of rotary column

SUBSCRIPTS

— average value
— static
— steady-state

x, y, z — component identification

Apresenta-se uma teoria fenomenológica aproximada para des-

crever a concentração de soluções diluidas numa coluna de

difusão térmica rotativa. A teoria baseia-se na construção de

um modelo bidimensional simplificado e subsequente aprovei-

tamento da metodologia de Ramser no tratamento de colunas

«de paredes mó,'eis». Discute-se a aplicação do modelo teórico

a colunas reais, definindo-se, por analogia com a coluna termo-

gravitacional, uma «espessura equivalente» de coluna rotativa.

As equações de separação assim obtidas mostram que o rendi-

mento da coluna rotativa depende apreciavelmente da cons-

tância (perfeição geométrica) do espaço anular. Para colunas

perfeitas o grau de separação é praticamente independente

da velocidade de rotação, sendo superior ao grau de separação

que se obtém em idênticas condições na coluna estática. Para

colunas não perfeitas, contudo, o grau de separação diminui à

medida que a velocidade de rotação aumenta, tornando-se,

acima de determinada velocidade, inferior ao da coluna estática.

Os (poucos) resultados experimentais existentes são discutidos

em termos da presente teoria.
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